
 Fundamental Concepts of Cosmology

 Cosmology: Study of the Entire Universe,   Its Origin, Evolution, & Ultimate Fate

 In the Beginning God Said      
Genesis 1:1      "In the beginning God created the heavens and the earth."
Genesis 1:3      "And God said, Let there be light: and there was light."
Genesis 15:5     God said “Look toward heaven, and number the stars."
Psalms 19:1     "The heavens declare the glory of God and the expanse 
                             proclaims the work of his hands.  Day after day they pour

   out speech; night after night they communicate knowledge."
Romans 1:20   "For His invisible attributes, that is, His eternal power and
                             divine nature, have been clearly seen since the creation of 
                            the world, being understood through what He has made."

 Mathcad operations are shown in purple italics.  For example:

     "The first principle is not to fool yourself – and you are the easiest person to fool."  Richard Feynmann

      "The popular notion that the sciences are bodies of established fact is entirely mistaken. 
      Nothing in science is permanently established, nothing unalterable, and indeed science is
      quite clearly changing all the time, and not through the accretion of new certainties."   Karl Popper   

      "The progress of science is strewn, like an ancient desert trail, with the bleached skeletons 
       of discarded theories which once seemed to possess eternal life."                                      Arthur Koestler

      "Time and again the passion for understanding has led to the illusion that man is able to 
       comprehend the objective world rationally by pure thought without any empirical foundations 
       – in short, by metaphysics."                                                                                                              Albert Einstein

“[I]nflationary cosmology, as we currently understand it, cannot be evaluated using the scientific method.”
 Paul Steinhardt, (One of the inventors of the Theory of Inflation.)

 "Science is on a journey, it's traveling, it hasn't arrived..."                                                   Alister McGrath 
   

 "Science cannot produce any final answers on the subject of origins."     Alexander Williams and John Hartner

Tom Kotowski
April 23, 2025          
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 Purpose - Compactly Reproduce the Math Models of the Concepts of Cosmology
The purpose of this work is to present some of the Fundamental Concepts and Models of Cosmology. Original papers,
data, math, and concepts of the Λ-Cold Dark Matter (ΛCDM) Model "Big Bang" were reviewed.  These concepts were
then used to reproduce and evaluate these models. The evidence and concordance for the various models are shown in the

various plots of model parameters.  In general, Each Cosmological Concept has been abstracted into a Single Page.

 This paper is a Survey of the Fundamental Concepts of Cosmologicaland and is not an original work . 
One goal was to capture the existing concepts & mathematical models of Cosmology in a Functional Type
Programming paradigm, such as Mathcad, that closely follows the traditional mathematical notation presented
in the format of a worksheet. The goal is to make the equations for the cosmoloogy models explicit.
The math reasoning, logic, and the programming are captured and documented in the Mathcad Notation.
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 I. Introduction: Key Historical Events, Measurements, & Math Models
 

 Key Mathematical Concepts for Correct Modeling of Planetary Motion
 

127 AD:  Ptolomy proposed epicycle geocentric model of universe.  This theory holds for 1500 years.
1543: Copernicus prosed the Heliocentric Model of the Universe.  Galileo's telescope verifed this from the orbit of Venus.
1605:  Kepler's Laws describe the Elliptical Model for Planet's Orbits. Lunar Conic Model, Time of Flight, Polar Model.  
1686: Newton's Laws (supercede Kepler's) and Einstein's GR gives value for the precession of the perihelion of Mercury.  
  

 Key Concepts and Discoveries (Measurements) of Cosmology of Galaxies
  

1.  Birth of Cosmology: Mathematical Basis of ΛCDM Cosmology: Einstein's General Theory of Relativity (GR)
     In 1917 Einstein developed his General Theory of Relativity (GR), the general tool of Modern Cosmology. 

2. 1912 Vesto Slipher, using spectroscopy, discovered the redshift of galaxies. Used Doppler Effect to calculate velocities.

3. In 1922 Friedmann developed a solution of GR that showed that the universe is not static, but predicted that the
universe will expand. In 1927 Lemaitre came up with a model that included mass density and pressure. He showed a linear
relationship between expansion of the universe and distance. This relationship was verified by redshift measurements by
Slipher & Hubble's measurement of distance to galaxies. Hubble made the correlation between velocity and distance.

4. In 1929, measurements of the distance and the velocity of how fast galaxies are moving away from us were made by
Edwin Hubble. The correlation he discovered between distance and velocity is know as Hubble's Law. 
In 1932, Einstein and de Sitter solved GR for an expanding (λ = 0), Hubble Ho, finite mean density, flat universe. 

4. In 1948 prediction of existence of Cosmic Microwave Background Radiation (CMBR) made by George Gamow.  

5. In 1950's it was thought that the light elements, such as hydrogen and helium. were formed in stars. However, the
observed % of helium was too high to be formed from the interior temperatures of stars. The percentage of Helium
can be explained by the BBT, i.e., the universe was so hot that it could produce a high percentage of helium. 

6. In 1964 Penzias and Wilson, while calibrating a radio telescope accidentally discovered this (CMBR). Based on GR,
the discovery of CMBR, and Hubble's Law the ΛCDM Theory was proposed. To verify that the CMBR originated from
a BB, in 1989 the COBE spacecraft was launched to determine if the temperature variations of the CMBR were
consistent with a ΛCDM Origin. The uniformity of CMBR agreed with BBT predictions. 
  

7. Observations of rotational velocity of galaxies implied the existence of a new form of matter: Cold Dark Matter. 
    

8. 1960's: The Development of the ΛCDM (Lambda Cold Dark Matter) Model
 

9. In the 1980s the Concept of Inflation was proposed to explain the fine tuning of the universe. Cosmic inflation,
cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary
epoch is believed to have lasted from 10⁻³⁶ seconds to between 10⁻³³ and 10⁻³² seconds after the ΛCDM. It requires a fine

tuning of one part in 1050. XIX discusses the serious problems with the validity of this theory.
 

10. 1992: Discovery of the anisotropic nature of the universe in the CMBR.  Requires corrections to FRW model.
  

11. In 1998, it was observed that the rate of expansion of the universe increased. This increase was attributed to a
new form of energy called dark energy. In 2022, it was found to increase 5% to 9% even faster than thought. 
The Greek letter Λ (lambda) is used to represent the cosmological constant, which is currently associated with a vacuum
energy or dark energy in empty space that is used to explain the contemporary accelerating expansion 
of space against the attractive effects of gravity. A cosmological constant has negative pressure.
  

Satellite Space Telescopes: 1989 NASA COBE, 1990 ESA Planck,  1990 NASA and ESA Hubble,  2021 JWST.
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 The High-Precision Era of Cosmology

This refers to the period starting in the late 1990s and early 2000s when cosmology transitioned from a largely theoretical
field with significant uncertainties to a precise, data-driven science. This transformation was driven by high-resolution
observations of the cosmic microwave background (CMB), large-scale galaxy surveys, and supernova studies.
  

 Key Milestones of the High-Precision Era
 Cosmic Microwave Background (CMB) Measurements:
 Hubble 1990 (90-2,500 nm):
While the Transition fo High Precision Cosmology is associated with CMB observations in the post-1990s era, Hubble
measured key parameters such as the Hubble Constant, H0.

 COBE (1992): 
First detected CMB anisotropies, confirming early universe structure formation.
 BOOMERANG & MAXIMA (1998–2000): 
Provided detailed maps of the CMB power spectrum.
 WMAP (2003–2013): 
Precisely determined key cosmological parameters (age, composition, curvature).
 Planck (2009–2018): 
Achieved even higher precision, refining the standard cosmological model.
Type Ia Supernovae & Dark Energy (1998–1999):
 James Webb Space Telescope Probing the Early Universe 2021--- (Infrared 600-28,500 nm):
While not specifically dsesigned to probe the CMB, it contributes significantly by the Discovery of Ancient Galaxies:
JWST has observed galaxies that existed approximately 290 million years after the ΛCDM, providing insights into the
formation and evolution of the earliest cosmic structures z > 10-15.  It was designed to last at least 5 and 1/2 years.
Identification of Massive Early Galaxies: The telescope detected six massive galaxies formed between 500 to 700 million
years post-ΛCDM. These galaxies challenge existing theories of galaxy evolution due to their substantial mass & density.

Observations from the Supernova Cosmology Project and the High-Z Supernova Search Team showed that the universe's
expansion is accelerating.
This led to the discovery of dark energy, now estimated to make up ≈68% of the universe's energy budget.
  

 Large-Scale Galaxy Surveys:
 Sloan Digital Sky Survey (SDSS) (2000–present): Mapped millions of galaxies, measuring large-scale structure and
baryon acoustic oscillations (BAOs).
 2dF Galaxy Redshift Survey (1995–2002) or 2dFGRS: 2dF used the two-degree field spectroscopic facility on the
Anglo-Australian Telescope out to z ~ 0.2.  Provided key constraints on matter density and galaxy clustering.
ΛCDM Model Confirmation:
 
The Lambda Cold Dark Matter (ΛCDM) model became the standard framework, describing a universe composed of
≈68% dark energy, ≈27% dark matter, and ≈5% normal matter.
Baryon Acoustic Oscillations (BAOs) & Precision Distance Measures:
BAOs, detected in galaxy clustering patterns, provided an independent "standard ruler" for measuring cosmic expansion.
  

 Impacts of the High-Precision Era
Cosmological Parameters Now Known to Percent-Level Accuracy:
Age of the Universe: 13.8 billion years
Hubble Constant (H₀): 67 to 74 km/s/Mpc (some tension remains between Planck and local measurements)
Matter Density (Ωₘ): 0.31
Dark Energy Density (ΩΛ): 0.69
     

 Shift from High Precision Parameter Estimation to Fundamental Physics:
Questions about the nature of dark energy, dark matter, and potential physics beyond ΛCDM. 
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The Universe is big in both space and time, and for much of human history it has been largely  beyond the reach of our
boldest ideas and most powerful instruments. The birth of modern cosmology was roughly 100 years ago. Albert Einstein had
introduced General Relativity, the first  theory of gravity and space-time capable of describing the entire Universe, and the
first cosmological solutions had been found (e.g., the de Sitter, Friedmann, and Lemaître solutions as well as  Einstein’s static
model). At about the same time, George Ellery Hale and George Willis Ritchey  invented the (modern) reflecting telescope,
and Hale moved astronomy to the mountaintops of  California—first Mount Wilson and, later, Palomar Mountain. With bold
ideas and new instruments, astronomers were ready to explore the Universe beyond our own Milky Way galaxy and  began
to discover and understand the larger picture. 
 Hale’s second big reflector, the 100-inch Hooker telescope, enabled Edwin Hubble to discover  that galaxies are the
building blocks of the Universe today and that it is expanding—the signature of its big bang beginning. While it took a few
years to connect the solutions of General Relativity  to the observational data, the basics of the big bang model were in place.

.In 1972, years before Standard Model referred to the remarkable theory that describes quarks and leptons.  This
 S tandard Model (Weinberg's Classic "Gravitation and Cosmology") traces the Universe from a hot soup of hadrons at

around 10-5 s through the synthesis of the light elements (largely 4He with trace amounts of  D, 3He, and 7Li) at a few
seconds to the formation of neutral atoms and the last scattering of  CMB photons at around 400,000 years after the big
bang, and finally to the formation of stars and  galaxies.  
 The triad of the expansion, the  light-element abundances, and the blackbody spectrum of the CMB provided an equally
strong  observational foundation.  
In 1970, Sandage summed up cosmology as the search for two numbers, H0 and q0. The  expansion rate of the

Universe, H0, also sets the age of the Universe, t0 = aH0
-1, with the deceleration parameter q0 determining the constant

a. And for a universe made up only of matter, q0 , the  ratio of the matter density to the critical density (Ω0 ), and the

curvature radius of the universe are  related: q0 = Ω0 /2 and Rc = H0
-1/|Ω0 - 1|½.  It would take until 2000 and the

Hubble Space Telescope (HST) Key Project to pin down H0  with a reliable  error estimate: 

H0 = 72 ± 2 ± 6 km s -1 Mpc -1 (statistical and systematic).

 “Low-precision” versus “High-precision” Cosmology

 H 0  measurements from 1920 to 2020. 

By 1970, most measurements were between 50 and 100 km s−1 Mpc−1, but with unrealistically small error
bars. The Hubble Space Telescope Key Project changed that with its 2000 determination, 

H0 = 72 ± 2 ± 6 km s−1Mpc−1.  As for q0  it has been replaced by other cosmological parameters that better

capture the physics and that can be measured with accuracy and precision.
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 Three Contrasting World Views Concerning the Validity of ΛCDM Singularity Hypothesis

 #1:  An Introduction To Modern Cosmology ,  Andrew Liddle
  

    Four Observational Evidences for the ΛCDM Model: 
     1. The expansion of the universe according to Hubble's law (as indicated by brightness and redshifts of galaxies), 
     2. The discovery and measurement of the Cosmic Microwave Background Radiation (CMBR), 
     3. The relative abundances of light elements produced by ΛCDM nucleosynthesis. 
     4. Observations of Galaxy formation and evolution and Agreement of Different Tests for the Age of the Universe
  

"The development of cosmology will no doubt be seen as one of the scientific triumphs of the twentieth century.
At its beginning, cosmology hardly existed as a scientific discipline. By its end, the Hot ΛCDM cosmology stood
secure as the accepted description of the Universe as a whole. The turn of the millennium saw the establishment of
what has come to be known as the Standard Cosmological Model, representing an almost universal consensus
amongst cosmologists as to the best description of our Universe."  

 #2.  Dismantling the ΛCDM,  Reasons Why to Reject the Big-Bang Theory ,  Alex Williams,  J. Hartnett
 The theory lacks a credible and consistent mechanism for the Origin of the Universe before the CMBR.  
"The big-bang universe begins in a singularity (entire universe crushed into a point of infinite density) and there is no
known mechanism to start the universe expanding out of the singularity — the equations in the theory only work after
the expansion has begun. It then requires a hypothetical period of stupendous inflation and stopping at a precise point
to halt the universe from recollapsing. It further requires incredible fine tuning to maintain stability for a flat universe. Its
mechanism for turning primordial energy into matter would produce equal amounts of matter and anti-matter but our
universe is made only of matter. It is inconsistent with Thermodynamics. It cannot explain the low entropy at the
initial expansion."  The detailed particle physics mechanism responsible for inflation is not known. It has to violate
physical laws and appeal to unknown forces (dark energy) and substances (dark matter) to explain what we observe. 

 #3. Theological Arguments for Age of  "Firmament"/Galaxy:   God Created Firmament/Galaxy in 2 Days .
       Epistemological Foundations and Assumptions ( The Lost World of Genesis One ,  John Walton    (ANE Texts )
1.  Define a test for determining the Truth of a Proposition:
          The Law of Non-Contradiction: This law states that a truth proposition cannot be both statement A (what it is) and
         statement non-A  (what it is not) at the same time and in the same relationship.  One implication of this is that the vast 
         corpus of Physics is self-consistent and thus passes the Law of Non-Contradiction.
2.  2 + 2 always equals 4. This is true for all time & everywhere in space.  This establishes that Mathematics is always valid.
         For example, this law is true in the garden of Eden before the fall, in heavenly places, & everywhere in this universe.
         By extension, this implies that the Laws of Mathematics hold everywhere in space and for all time. 
         With regard to math and logic, the above 2 + 2 always equals 4 implies that the logical mind of man (not nec-  
         essarily his moral compass) is not impaired by the fall of Adam.  Luther said truth comes from the Bible and Reason. 
3.  Law of Cause and Effect - As a generalization, the cause must always be greater than the effect. Cause for BBT.
4.  Space and Time had a beginning.  Refer to Section XXXIII Proof of the Borde-Guth-Vilenkin (BGV) Theorem. 
5.  Moses Observed: sky above, ground below, & a horizon (firmament above), with water surrounding ground, above
the firmament, and below the ground (the deep).  Genesis 1:1-2: "In the beginning God created the sky and the land.  ...
And the Spirit of God moved upon the face of the waters".  Gen 1:6-8  "And God said, Let there be a firmament in the
midst of the waters, and let it divide the waters from the waters.  And God made the firmament, and divided the waters
which were under the firmament from the waters which were above the firmament: and it was so. And God called the
firmament Heaven. And the evening and the morning were the second day."   God Created the Firmament in two Days.
6. Physicist Eugene Wigner wrote a paper on the "The Unreasonable Effectiveness of Mathematics in the Natural
Sciences."  One of the implications of this is the wonder that the mind of man can understand the depths of the laws of
Physics.  A theological explication of this mystery is given in the Book of Genesis 1:27: “So God created man in his own
image, in the image of God he created him; male and female he created them.”   Thus man, being made in the image of
God (Imago Dei), is thus capable by God's design to understand the Laws of Physics and Math, as created by God.
7.  Lifetimes: The sun has enough nuclear fuel to run for about 10 billion years and about half of it has been used up.
        The half-life of Uranium 238 is measured to be about 4.5 billion years. Elements heavier than Uranium do not exist. 
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 T he Nature of Science: Physics or Metaphysics - Limits to the  Legitimate Realm of Physics
   

 Unspoken Assumptions
Most people today believe because they have been taught it is so, that physics can explain the  Origin of the universe. This
is the Assumptions of Naturalism: The idea that matter is all there is. Upon this rests the current orthodoxy of cosmology.
     

 What is Science?  The Era of Post Empirical Science
The philosopher Karl Popper argued that what distinguishes a scientific theory from pseudoscience and pure metaphysics
is the possibility that it might be falsified on exposure to empirical data. 
In other words, a theory is scientific only if it has the potential to be proved wrong.
We live in the era of post empirical science.  Major Concepts such as a Multiverse, Bouncing Universe, or 24
Dimensional String Theory can never be falsified. By Popper's criteria, these concepts do not constitute areas of
legitimate scientific inquiry.  One can hold the position that String Theory is manifestly false. It fails all predictions.
   

 Lost World of Genesis , John Walton:  There are Conceptual Limits to Science
"Based on the concept of the Scientific Principle, Science can only study things that happen more than once.
By this definition, many areas of Cosmology can never be verified or falsified. These areas would be in the realm of
speculation. To explain something means to describe the unknown in terms of the known. Unknown concepts such as
Dark Energy or Cold Dark Matter do not do well to further elucidate area of inquiry.  They are more in the
arena of Metaphysics rather than Physics.
The deeper we look into Physics and also the Biological Structure of the human cell, the deeper we see into a perhaps
never ending depth of complexity." 
   

 Distinguishing Between the Realm s  of Myth, Philosophy, Explanations, Metaphysics, and Science
One case where science crosses over into religion is  The Beginning of Our Universe. Physicists have put forward
many theories for it: a ΛCDM, a big bounce, a collision of higher-dimensional membranes, a gas of strings, a network, a
5-dimensional black hole, and many more. But the scientifically correct answer is, that we don't know how the universe
came into existence. There are good reasons to think we will never know. A greater cause, that transcends the physical
realm, may be the origin.  Many are unwilling to accept this as a possibility. Many fill this knowledge gap with tall tail
creation myths, written in the language of Mathematics, such as a landscape of multiverses populated with googles of
string topologies.  
Einstein's quote from first page: 
    "Time and again the passion for understanding has led to the illusion that man is able to comprehend the  
     objective world rationally by pure thought without any empirical foundations – in short, by metaphysics."
 The Origin, Purpose, and Destiny of the Universe: P erceived Tension Between Cosmology and Christianity
Christianity is consistent with the Big Bang Theory. Genesis 1:3  And God said "Let there be light" and there was light. 
Genesis is consistent with the Ex Nihilo creation of the cosmos. Chronologically, the different concepts men have had
about the nature of the universe were: First Pagan God Centered, then Earth Centered, then Sun Centered, then the
Great Enlightenment Material Centered, and presently, the latest Science of Cosmology Centered. The telescope was the
instrument that falsified a number of astronomical world views. With respect to origin, what is the greatest possible cause,
the Universe or God?  With respect to these, what is the greatest possible explanation for our reality: Explanations for the
physical properties and interactions of matter/energy or a Transcendent Being? Which is the more Transcendent origin?
Our Perceptions and Theories about the Physical or God?  The Law of Cause and Effect:  The cause must always be
greater than the effect.  Who or What is a Self-Consistent cause to explain the creation of time? 
 Which is the more real? Abstract Field Theories about Matter, Tensor Field Equations, and Singularities or the Spiritual
Influence of a Creator God who is the Creator of the Esotertic Field Theories of Physics, Math, and the Imagio Dei
Mind?  Philosophically, the only ultimate origin is God who transcends a mere physical universe.   
   In the end, only a Supreme Law Giver, is the creator of the Laws of Physics and Mathematics.  He is, by Definition, the
Great Lawgiver of the Universe.  He is the one explanation for the fine-tuning of the laws of Physics and cosmology. All
truth, including the physical, is God's truth. Thus there is no tension between Material Cosmology and the Biblical
Old and New Testaments as long as the Biblical Account of Creation is not interpreted out of the context of the age
and culture in which it was written.  For Genesis, it is in the context of the age, culture, and World View of Moses and
the children of Abraham coming out of Egypt seeing Only the Milky Way Galaxy stars, sun, and moon.
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 Is Mathematics the Invention of Man or the Mind of God?
 The question of whether mathematics is an invention of man or alternatively, a reflection of the mind of God. This is a
profound philosophical and theological quandary. There are two main perspectives on this issue:  
        

 1. Mathematics as a Human Invention (Secular Theories)
- This view holds that mathematics is a creation of human intellect, developed over time to describe patterns, relationships,

and logical structures. Other Philosophical Categories: Reductionism, Empiricism, Logicism, Intuitionism, and Formalism.1

- Numbers, symbols, and mathematical systems (e.g., algebra, calculus) are seen as constructs designed to help us
understand and manipulate the world. Different cultures have developed different mathematical systems, which suggests that
mathematics is shaped by human experience and necessity.  
          

 2. Mathematics as the Mind of God (Platonist/Theistic View) 
- This perspective sees mathematics as something discovered rather than invented, reflecting the order and rationality of God
’s creation.  Mathematics is a reflection of the fact that man was made in the image of God. We are the mind of God.
- Many theologians and philosophers believe that mathematical truths exist independently of human thought, much like moral
or logical truths.  
- Biblical passages suggest that God established order in the universe (e.g., Job 38:4-5, where God speaks of measuring the
foundations of the earth).  
- The precise mathematical laws governing nature—such as the Fibonacci sequence, the fine-tuning of physical constants 
   (See Sections XXXI, XXXII), Intelligibility of Cosmology, and the structure of DNA—point to a divine intelligence.  
         

 Until late 19th century, scientists were typically Christians who saw no conflict between their science and faith.
- Mathematicians like Johannes Kepler saw their work as "thinking God’s thoughts after Him."
- Galileo said "The laws of Nature are written in the language of mathematics."
- Pascal provided a famous 'wager' in which he gives a probabilistic argument for choosing to believe in God. 
- Descartes provided two theistic proofs of God in his Meditations (Descartes 1976).
- Newton believed strongly in a Designer who worked through mathematical laws. "The most beautiful system of sun,  
      planets and comets, could only proceed from the counsel and dominion of an intelligent and powerful Being."
- Leibniz regarded mathematical theorems as 'primarily and continuously thought by God', and when a mathematician
      discovers them, 'this knowing is a repetition of the primary divine knowing'. 
- Bernoulli was a strong Calvinist and reflected on the theological implications of his discoveries in probability theory.
              

 In the late 19th century, several intellectual, scientific & philosophical developments contributed to a fracture
between a predominantly theistic view among many scientists and biblical literalism. Some key factors include:
1. Rise of Positivism and Empiricism – Thinkers like Auguste Comte promoted the idea that only observable, empirical 
    evidence should be used to understand the world, reducing the role of theology in scientific explanations.
2. Darwin’s Theory of Evolution (1859) – Charles Darwin’s "On the Origin of Species" provided a naturalistic explanation
    for the diversity of life, challenging traditional religious interpretations of creation.
3. Advancements in Physics & Cosmology – Theories in thermodynamics and the mechanistic view of the universe led some
scientists to see the cosmos as an  eternal self-sustaining system, reducing the perceived need for divine intervention.
4. Higher Criticism of the Bible – Scholars began applying historical-critical methods to the Bible, which led to questioning
   of traditional theological interpretations.  
5. Secularization of Education - Harvard, Yale, Dartmouth, UPenn, and Princeton, were founded as Schools of Divinity.
   Universities & scientific academies increasingly promoted secular approaches to knowledge, leading to a decline in 
   explicitly religious perspectives in academic science:  Now there was no meaning to life.  Everyone is their own god.
             

 Biblical, Philosophical, and Cosmic Support for Mathematics as Divinely Inspired  
Psalm 19:1 – "The heavens declare the glory of God; the skies proclaim the work of his hands." 
(The universe follows mathematical laws.)  Colossians 1:16-17– "In him all things were created… He is before all things, 
and in him, all things hold together." (Mathematical order is part of God's sustaining power.)  The Mind of Man- Imagio Dei.
 Cosmic Paradigm Shift: In 1965 Penzias and Wilson discovered the CMBR, the echo of the ΛCDM.    The eternal
universe had a beginning.  This beginning is outside the realm of Science.  Thus, Cosmology is not a threat to Christianity, 
instead the origin of this Mathematical Representation of the Cosmos is within the eternal realm --- the Mind of God.
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 IIA. The ΛCDM or Lambda-CDM Concordance Model of Cosmology
 See Section XXII:  Λ-CDM Model Theory and Parameters

The ΛCDM or Lambda-Cold Dark Matter Model is a parameterization of the ΛCDM cosmological model in
which the universe contains three major components: first, a cosmological constant denoted by Lambda associated
with dark energy; second, the postulated cold dark matter; and third, ordinary matter. A Concordance cosmology
is a model of the universe that assumes a minimum number of parameters, especially the Lambda-CDM
model, which has 6 parameters: physical baryon density parameter; physical dark matter density parameter; the age
of the universe; scalar spectral index; curvature fluctuation amplitude; and reionization optical depth.   Different  sorts
of  measurements  —  each  using  different  kinds of instruments to look at completely different kinds of objects, all
involving different kinds of physical processes, give completely consistent results. It is frequently referred to as the
Standard Model of ΛCDM Cosmology because it is 
 The Simplest Model that provides a reasonably good account of the following properties of the cosmos:

the existence, structure, uniformity, and magnitudes of anisotropies of the cosmic microwave background·
the large-scale structure in the distribution of galaxies·
the observed abundances of hydrogen (including deuterium), helium, and lithium·
the accelerating expansion of the universe observed in the light from distant stars, galaxies and supernovae.·

   

This model assumes that General Relativity (GR) is the correct theory of gravity on cosmological scales. It emerged
in late the 1990s as a concordance cosmology, after a period of time when disparate observed properties of the
universe appeared mutually inconsistent, and there was no consensus on the makeup of the energy density of the
universe. The ΛCDM model can be extended by adding cosmological inflation, quintessence, and other elements that
are current areas of speculation and research in cosmology. This model does not explain baryon asymmetry..
The model includes a single originating event, the "ΛCDM", a singularity, which was not an explosion, but the

abrupt appearance of expanding spacetime containing radiation at temperatures of around 1015 K. This was

immediately (within 10−29 seconds) followed by an exponential expansion of space by a scale multiplier of 1027

or more, known as cosmic inflation. The early universe remained hot (above 10,000 K) for several hundred
thousand years, a state that is detectable as a residual cosmic microwave background, or CMB, a very low
energy radiation emanating uniformly from all parts of the sky. 

 IIB.  Hypothesized Thermal History of the Universe
We will briefly summarize the hypothetical thermal history of the universe, from the Planck era to the present. As we
go back in time, the universe becomes hotter and hotter and thus the amount of energy available for particle
interactions increases. As a consequence, the nature of interactions goes from those described at low energy by long
range gravitational and electromagnetic physics, to atomic physics, nuclear physics, all the way to high energy
physics at the electroweak scale, grand unification (perhaps), and finally quantum gravity. The last two are still
uncertain since we do not have any experimental evidence for those ultra high energy phenomena, and perhaps
Nature has followed a different path.  

 In principle, one can theoretically trace the evolution of the universe from its origin till today.  According to the best

accepted view, the universe must have originated at the Planck era (1019 GeV, 10-43 s) from a quantum gravity
fluctuation. Needless to say, we don’t have any experimental evidence for such a statement: Quantum gravity
phenomena are still in the realm of physical speculation. However, it is plausible that a primordial era of cosmological
inflation originated then. Its consequences will be discussed below. Soon after, the universe may have reached the

Grand Unified Theories (GUT) era (10 16 GeV, 10-35 s). Quantum fluctuations of the inflaton field most probably left
their imprint then as tiny perturbations in an otherwise very homogenous patch of the universe. At the end of inflation,
the huge energy density of the inflaton field was converted into particles, which thermalized and became the origin of
the hot ΛCDM as we know it. Such a process is called reheating of the universe. 
Since then, the universe became radiation dominated. It is "probable" (although by no means certain) that the
asymmetry between matter and antimatter originated at the same time as the rest of the energy of the universe, from
the decay of the inflaton. This process is known under the name of baryogenesis since baryons (mostly quarks at
that time) must have originated then, from the leftovers of their annihilation with antibaryons.
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 IIC. ΛCDM Model Cosmological Eras for the Early Universe

To describe the conditions of the early universe quantitatively, recall the relationship between the average thermal energy of
particle (E) in a system of interacting particles and equilibrium temperature (T) of that system where kB and ℏ are

Boltzmann and Planck constants. Then we can calculate the Energy Values, E for the different eras. 

kB 1.380649 10
23-


J

K
:= eV 1.6 10

19-
 C volt:= GeV 10

9
eV:= G 6.67 10

11-
 N m

2 kg
2-:=

ℏ 4.13 10
15-

 eV s:=  Convert Energy to Temp (K): E T( ) kB T:=  Temp (K) to Energy: T E( )
E

kB
:=

 Planck Era:  Derived from Fundamental Constants. Scale for Quantum Effects on Gravity. Create Mini Black Holes?

 Planck Length  Planck Energy, Temp, Mass, Density

lpl
ℏ G

c
3

:= lpl 4.045 m 10
35-

= tpl

lpl

c
:= tpl 1.349 s10

43-
= Epl

ℏ

2π tpl
:= Epl 4.872 10

18
 GeV=

T Epl( ) 5.646 10
31

 K=
 GUT Era:   EGUT ≈ 1016 GeV T 10

16
GeV( ) 1.159 10

29
 K=

Mpl
ℏ c
G

5.45 10
8-

 kg=:=

 Nucleons: Form at energies ≈  rest mass of a proton, or 1 GeV.
ρpl

Mpl

4

3
π lpl

3

1.97 10
95


kg

m
3

=:=
T 1GeV( ) 1.159 10

13
 K=

 Atoms: Atoms form at an energy equal to the ionization energy of ground-state hydrogen (13 eV). The effective
temperature for atom formation is therefore

T 13eV( ) 1.507 10
5

 K=

 Photons: The formation of atoms in the early universe makes these atoms less likely to interact with light. Therefore,
photons that belong to the CMBR must have separated from matter at a temperature T associated with 1 eV (the
approximate ionization energy of an atom). The temperature of the universe at this point was

T 1eV( ) 1.159 10
4

 K=

 CMBR:    μeV 10
6-

eV:= Tcmbr 2.725K:= E Tcmbr( ) 235.142 μeV=

 Planck Time
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      Hypothetical and Observable Thermal Sequence For the ΛCDM Theory
https://universe-review.ca/F02-cosmicbg01.htm
The relics and observables are physical facts, 

while the interpretations of the events are mostly theories or conjectures.  See XXXII for Plot of Time Evolution of Eras.

At any given time, temperature translates to a characteristic mass of particles (kT ≈ mc2), which dominate that epoch.

Era Time                   
@ end of era

Size 
(observable)  
@ end of era

Energy/Temp
Relics & 

Observables

Events                                          
(as re-constructed 

from theories)

Planck era (???) < 5.4x10-44 sec < 1.6x10-33 cm > 1.2x1019 Gev
(3+1)D space-time; 
Cosmic Expansion

Expansion started from a 
point to Planck scale; all 

forces united into one

GUT era <10-35 sec < 10-26 cm
    > 1014 Gev                      

> 1027 K

High energy cosmic 
rays; fundamental 

interactions

Separation of spacetime 
and matter; separation of 
gravitational, strong, and 

electroweak forces

Un-observable 
universe;

Reheating; Unstable 
vacuum;

large scale structures quantum fluctuations
Top Quark era  

Electro-weak era  
Quark-Gluon era  

QCD Domain

≈ 10-25 sec       
< 10-11 sec       

≈ 10-10 sec       
≈ 10 µsec

< 1014 cm

>  8 Tev                
>  300 Gev                         
> 150 Gev                    
> 200 Mev

Radiation; excess of 
matter over anti-

matter; separation of 
force (bosons), and 

matter (fermions) fields

Radiation released in 
reheating; baryon 

asymmetry; separation of 
weak and E-M 

forces; origin of mass

Hadron era < 1 sec < 1020 cm > 1.7 Mev Formation of hadrons Axion as dark matter

Weak decoupling < 4 min < 4x1020 cm > 100 kev
neutron/proton ratio 

fixed
Neutrinos decouple

Nucleosynthesis < 1/2 hour < 1021 cm > 40 Kev
Fraction of Light 

elements

Nuclear reactions 
freeze out, stable nuclei 

form

Radiation era                                  
Matter era < 0.24 My < 2x1027 cm > 0.6 ev

Mass density 
fluctuations

Matter density finally 
exceeds radiation 

density

Recombination
e- and p+ recombine 

into H atoms,
universe became 

transparent to light

   ----- Redshift-----                       
z = 1100 to 30                      

Dark Ages
< 1 Gy < 2x1028 cm > 100oK

21 cm radio emission, 
First stars, heavy 

elements

mass fluctuations grow, 
first small objects 

coalesce, reionization 

Galaxy formation < 2 Gy < 2.5x1028 cm > 70oK
Stars, quasars,        

galaxies
Collapse to galactic 

systems
dark energy became 

dominant;
formation of clusters of 

galaxies

Present era ~ 13.7 Gy ~ 4.7x1028 cm ~ 2.73oK Supercluster 
Large scale gravitational 

instability

Inflation (Rate of 
Expansion >>> c) < 10-32 sec < 30000 cm 1014 Gev

< 0.3 My < 3x1027 cm > 3000oK

General Cosmology Time Era:  Astronomical Observable, Relics, and Measureable

 CMBR                          
1965                         

Penzias and Wilson

Bright age of     
Galactic Clusters

< 12 Gy < 4.5x1028 cm
> 3oK                     

> 0.00025 ev

Solar system; decline 
of stellar formation 

from peak
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 IID. List of  Challenges with  th e ΛCDM  Big Bang Theory (BBT) - See Section XXXI for More Details
The ΛCDM Theory is a Concordance Model.  It is derived by fitting six parameters to minimize errors. Therefore,
 it cannot make any testable predictions:
Methodology of BBT:  BBT has no predictive power.  It's origin is using six parameters to curve fit the model
to known measurements.  When faced with discrepancies between theory and observation, cosmologists habitually
react by adjusting or adding these parameters to fit observations, propose additional hypotheses, or even propose
“new physics” and ad hoc solutions that preserve the core assumptions of the existing model.
The BBT is based on the unverified core assumptions of the Cosmological Principle, namely that,
    The universe is isotropic and homogenous space at sufficiently large scales > 100 Mpc  (MegaParsec).
     However, The Cosmological Principle is manifested false within the distance scales that can be verified.
 BBT Violates the Second Law of Thermodynamics:  How did the universe start with such a Low Entropy?
The unknown nature and existence of Cold Dark Matter.     The unknown nature and existence of Dark energy
Without the above sources of matter, the universe would be younger than the oldest stars, which is a contradiction. 
Value of Cosmological Constant is one of the hugest inconsistencies in Physics. Off  by 120 orders of magnitude!
Inflation Theory that requires initial conditions so unlikely that the probability that it happened purely by chance is
greater than the probability of expansion by the Theory of Inflation. 
Inflation requires a density 20 times higher than that implied by nucleosynthesis.
Postulates that the universe springs from a singularity.  A singularity is a point of infinite density, infinite pressure, infinite
temperature, and zero volume. At best, an extremely unstable state that is beyond the known laws of physics. 
There is no known science that covers this, that is, no known physical laws. 
At best it is veiled by the Planck era.   A singularity is a thermodynamic dead end.  Cannot return to other states. 
None of Laws/Forces of Nature apply to Inflation, including GR.  No event horizon around it. No spatial direction.
Friedmann Model breaks down at a singularity. No shell in which to define density.  There is no space to put matter.
String Theory (M-Theory): Particles consist of one dimensional or two dimensional (called "branes") entities.
Absence of magnetic monopoles.

Assumption is that the only force on a cosmological scale is gravity.  The force of gravity is 10-39 times smaller than
E-M, but huge magnetic fields in space and indication of huge voltages and charge differences. 
There is no explanation for the absence of anti-matter.
Expansion from a Singularity cannot produce rotational momentum required for galaxies and planets.
Confined gas molecules will produce a turbulence, destructive to a flat universe.
      

 Latest Conflict with ΛCDM Theory - Latest Discoveries from the James Webb Telescope
The James Webb telescope, looking back to 400,000 years after the ΛCDM, has discovered at least five massive
galaxies.  These massive galaxies would have to grow 20 times faster than the Milky Way. For these young galaxies,
the BBT predicts galaxies 10 to 100 times smaller.  There are various ways to account for these new discoveries. 
 The Tenuous Link of the Stellar Distance Ladder
One of the Core Principles of the Current ΛCDM Theory (BBT) of the Universe is the Validity of the use of Stellar
Distance Ladders to measure the distance to galaxies. However, less than 1% of the visible universe has a Distance
Ladder that is verifiable by direct measurement.  
  

 Inconsistencies and Challenges -Cosmological "Tensions" Hubble Value  See Sections XXII and XXXII
Differences in measured values of Hubble Constant from Redshift vs. Recession Velocity and CMBR Uniformity
High redshift galaxy observations predict a higher star formation efficiency then BBT Planck CMB.

“Population of surprisingly massive galaxy candidates with stellar masses of order of 109 x Mass of the Sun, M⊙.

 See this Review Article for an Up-to-date Summary of the Challenges and "Tensions" facing the BBT:  
Challenges for ΛCDM: An update,  L. Perivolaropoulos and F. Skara,   arXiv:2105.05208v3    6 Apr 2022
         

 Successes of the  ΛCDM Model
The ΛCDM model has been remarkably successful in explaining most properties of a wide range of cosmological
observations including the accelerating expansion of the Universe (Perlmutter et al. 1999; Riess et al. 1998), the
power spectrum and statistical properties of the cosmic microwave background (CMB) anisotropies (Page et al.
2003), the spectrum and statistical properties of large scale structures of the Universe. 
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 Some Cosmology Nomenclature

 Rc                 Radius Hubble Sphere (Region where galaxies recede subliminally)
 gμν                   The Metric gμν. A rank two symmetric tensor that encodes information about geometry. 

 Tμν  Einstein Stress-energy Tensor which describes matter and energy distributions.

 Rδ
μν                 Riemann Tensor is a math construct used to characterize the curvature of space-time.

 Rμν                  The Ricci Tensor is a contraction of the Riemann Tensor.
 R                     The Ricci Scalar is a contraction of the Ricci Tensor.
 Gμν            The Einstein tensor Gµν is deϐined in terms of the Ricci tensor and scalar. 
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 III. Mathematical Basis ΛCDM Cosmology: Einstein's General Relativity, FLRW & GR Tests

where the spacetime metric gµν and its corresponding Ricci tensor Rµν and Ricci scalar R are related to energy content

expressed through the Einstein Symmetric, order-2, Energy-Momentum Tensor Tµν. Briefly, the Einstein equations

equate the matter that’s present in a spacetime with the spacetime’s geometry.

 General Relativity  Test #1: Schwarzschild Equation Prediction of the Formation of a Black Hole
The definition of proper time, τ (tau),  is the time interval for an observer at rest.     In Minkowski space time  

ds2 = dt2 − dx2, for dx = 0, dt = dτ. Similarly in the Schwarzschild Metric if we have an observer at rest then 
dr = 0...etc and then proper time should be dt = dτ  ( like in the SR case giving ds = (1−2M/r)dt  =  (1−2M/r)dτ

the first term T00 in the Einstein Tμν Tensor is Ttt. If you take the distance r to be equal to  rs 2
G M

c
2

=

See Plots Below for Passage of TimeΔτ r( )

and Space (ER) in Schwarzschild Black Hole
Δτ r( ) 1 2

GM

r
-:= E­R χ( ) χ e

χ

2 Θ+:=

 The Plot below show that at the Event Horizon that the passage of proper time, τ, slows to 0, that is, time stops.  

 Image of the  Event Horizon Captured
 by the EVLI  Event Horizon Telescope

Sagittarius A* 

* Physikalische Zeitschrift. XVII: 448; 
Einstein & Rosen 1935, Phys. Rev. 48 73

In 1915, Einstein developed his General Theory of Relativity (GR). GR consists of a number of  field
equations that relate the geometry of spacetime to the distribution of matter within it. GR provides a deep physical
and geometrical description of how mass/energy determines the dynamics of the universe. 
The space-time evolution of the universe is guided by the Einstein Field Equation.

In 1917, Schwarzschild solved the Einstein equations under the assumption of spherical symmetry, two years after their
publication. The most obvious spherically symmetric problem is that of empty space outside a planet or star. The mass
curves space-time and thus affects the particles moving nearby. The space-time interval in spherical coordinates in the
Schwarzschild solution is.
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then the time factor, Ttt ,
 which is equal to 1 - 2GM/c2r in ds2  becomes 0, so the value of ds2 is undefined. 

It becomes a singularity.   This value of the radius = rs is called the Schwarzschild radius. 

                 
 From the Schwarzschild Metric,  if we plot the passage of time, Δτ,  versus the distance to the center, r, the relation is:

Theoretically, this connects two
asymptotically flat "universes."

 Schwarzschild Black Hole
Mathcad 3D Surface Plot of 

Einstein-Rosen Bridge*

-- Black Hole 
        Event Horizon
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This calculated value from General Relativity agrees with the observed value of 43.1 ± 0.5 arcseconds per century. 

Assume that the metric that similar to the above Schwarzschild Solution, we assume that the solar system is spherically
symmetric, static, and asymptotically flat, so that the metric can be represented as follows:

where the dΩ2 = dθ2 + sin2θdφ2 term comes from spherical symmetry and T is the coordinate produced by the
timelike Killing vector field.  Then the  Euler-Lagrange Equations for φ and T are

 Binding Energy per Unit Mass, -E  Now r(φ) is periodic with period 2π.

where RS = 2GM is the 

Schwarzschild radius of the sun.

The above implies that L = r2φ˙ and E = T˙(RS/r − 1) are two constants of the motion. Then the relation L = −1 gives us:

Now we introduced the notation R± for the nonzero roots of
the quartic polynomial in terms of the closed orbit r'

Now the requirement that of a closed orbit with (r')2 ≥ 0 imposes some constraints on L, E, and RS; we need a

connected component of {r : r' ≥ 0} to be a compact subset of R+. 

This means there exist at least two values R+ and R− where r' = 0, i.e. aphelion and perihelion.  For Mercury

M⊙ 1.989 10
30

 kg:= R+ 69.8 10
6

 km:= R­ 46 10
6

 km:= Rs 2.95km:=

Then the angle shift from R− to R+ 

is given, as in the Classical case, by:

 Define  D, ε : Ε 0:=

D
R+ R­

R+ R­+
:= ϕ± ϕ+ ϕ­-=

ε
Rs

1 Rs D
1-+
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1
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1-
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+






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
π

1
Rs

D
-

Ε+:= ϕ± π- 0=

The above ϕ± equation is a trustworthy estimate of φ+ − φ− (half a revolution, in radians)

Since Mercury completes 415.2 revolutions each century, and there are 360·60·60/2π arcseconds per radian, we find
that General Relativity predicts that Mercury’s perihelion advances by

ϕ± π-( ) 360 60 60

π
 415.2 42.938= arcseconds per century.

 General Relativity Test #2:  GR Calculation of Precession of Mercury's Orbit
 Reference:   The Precession of Mercury’s Perihelion, Owen Biesel,  https://sites.math.washington.edu
Our First Test is the Calculation of the Precession of the Perihelion of Mercury. Newton's Theory says it 532
arcseonds per century, but the observed value is 43 arcseconds per century.
We will apply a General Relativistic treatment of geodesics in the Schwarzschild metric, and show that an “orbit”
matches the observed Mercury's shift of approximately 43 arcseconds per century.  We assume that the
particle is a test particle traveling along a geodesic through spacetime. Geodesics can also be described as
stationary points of the integral

Now use the Taylor series expansion (1 − ε/r) −1/2  ≈  1 + ε/2r.  This gives
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 GR Test #3: Predict Clock Difference Between GPS Satellite & Surface of Earth

The difference between a clock on the surface of earth and a clock in a Global Position Satellite in orbit above
the earth is 38 microseconds per day.  Does General Relativity predict this value of 38 microsecond difference?

 Two Things Affect the Net Time Dilation  (Note: This also applies to distant starlight. See Section  XXIB ): 
 Gravitation and Velocity.  Velocity of Satellite slows satellite time down relative to earth, 

but the Earth's Gravitational Field Slows down clocks on earth for different heights.

G is Universal Gravitational Constant

Total GPS Clock Dilation 38.438 s μ=

Twice a Day the Time for a Satellite is Slowed by (19 μs) to match time on Earth
If not Corrected the Position Error Per Day Would be:

 Two Satellite GPS Distance Error = Time Error x Speed of Light, c

c 2.99792458 10
8


m

s
=

G 6.674 10
11-

 m
3 kg

1- s
2-:= g 9.807

m

s
2

=

Me 5.97 10
24

 kg:=
veq 0.465

km

s
1040.175

mile

hr
=:= req 6378km:=

 GPS Period is 12 hours
alts 20200km:=

Total GPS Clock Dilation c 7.16 mile=

vs 3697
m

s
8269.953

mile

hr
=:= μ 10

6-
:=

alts 12551.698 mile=

 Special and General Relativity Gives the Amount of Time Dilation as:

 General Relativity: Schwarzschild Metric Gravitational Time Dilation Per Day

Δτ_Δtgravity alt( ) 1
2 G Me

alt req+( ) c
2

- 1
2 G Me

req c
2

--










24 60 60 s:=

Δτ for Satellite at Altitude: Δτ_Δtgravity alts( ) 45.643 s μ=

 Special Relativity: Velocity Time Dilation Per Day

vorbit r( )
G Me

r
:= Δτ_Δtvelocity r( ) 1

1

1
vorbit r( )

2

c
2

-










-:=

Λtvelocity_day Δτ_Δtvelocity alts req+( ) 24 60 60 s 7.206- s μ=:=

 Total Time on Earth Per Day is (Dilated) Longer by microseconds:

Total GPS Clock Dilation Δτ_Δtgravity alts( ) Λtvelocity_day+:=

 Scale Factor, Micro, μ

c is the speed of lightM is mass of the earth

 The Schwarzschild Metric, describes space-time in the 
vicinity of a non-rotating massive spherically symmetric. 
It gives the change in time, Δτ_Δtgravity for altitude, alt.

Rμ ν, 
gμ ν, R

2
- λ gμ ν, - κ Tμ υ, =

 The Einstein Field Equation
Gives the Schwarzschild Metric
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      Continuity Equation
(Specifies that matter is conserved.)

 See Sections 
 VII & XXVIII
for Density Plot

Λ≈ a–λt       

w = 1/3 radiation dominated a(t) ∝ t1/2 
w = 0   matter dominated     a(t) ∝ t2/3 

w = -1 vacuum dominated   a(t) ∝ eHo t

Θ2.7 = Tcmb/2.75mK 

Density of radiation today is mostly determined by the Temp of CMBR.

 IV. The Equation of State for a Simple Fluid Model
  

• Usually written as  P = w ρ    P is the Pressure and ρ is the density.
• Note that this relationship is the simplest model.  The actual model may be more complex.
• This is not necessarily the best way to describe matter/energy density;  it implies a fluid of some kind
This may be acceptable for the matter and radiation we know, 
                          but maybe it is not an optimal description for the dark energy
• Define Special values:

w = 0  means P = 0,  e.g., non-relativistic matter
w = 1/3 is radiation or relativistic matter
w = −1 looks just like a cosmological constant

… but it can have in principle any value, and it can be changing in redshift 
  

                                             Evolution of the Density,  ρ
  

                                                                      Generally:            ρ ≈ a–3(w+1)

          • Matter dominated      (w = 0):                                ρm≈ a–3               

          • Radiation dominated  (w = 1/3):              ρr ≈ a–4               Wavelength stretched with z

          • Cosmological constant (w ≈ –1):             ρΛ = constant    Constant Vacuum Energy

          • Dark energy with (w < –1) e.g., w = –2:                                         ρdm ≈ a+3

          – Energy density increases as is stretched out!
            – Eventually would dominate over even the 
           energies holding atoms together!  (“Big Rip”)

In a mixed universe, different components ρm, ρr, ρΛ will 

                        dominate the global dynamics at different times  
Note in principle, it could be a function of time, density, etc
  

•  Radiation density decreases the fastest with time 
– Must increase fastest on going back in time
– Radiation must dominate early in the Universe

• Dark energy with  w ≈ –1 dominates last; it is the 
dominant component now, and in the future
  

                             Models With Both Matter & Radiation   ==>
However, to good approximation, assume that K = 0 and either  radiation or  matter dominate
                                                                                                       γ-dom     m-dom    Λ-dom   

"a" is the symbol for proportional to          a(t)       a  t1/2     a  t2/3 

 • Matter (m) dominated          (w = 0):                    ρm a  a–3         a  t-3/2     a   t-2 

 • Radiation (γ) dominated       (w = 1/3):                  ργ  a  a–4         a  t­2      a   t­8/3 

 • Cosmological Constant (Λ)    (w = -1):  -------------------------------------------------->
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 In 1922   Friedmann–Lemaître–Robertson–Walker (FLRW) proposed a Relativistic Space-Time
Metric that is the basis for an exact solution of Einstein's field equations of General Relativity; it is based on the
assumption of a homogeneous, isotropic, and expanding (or otherwise, contracting) universe. The general form of
the metric follows from the assumption of homogeneity and isotropy of space in the universe; Under these set of
assumptions, Einstein's field equations are only needed to derive the scale factor of the universe as a function of time.

If we model the universe as a homogeneous, isotropic with spherical coordinates, we obtain the the Friedmann
metric. By defining a cosmic scale factor, "a(t)", which is a function of time.  This scale factor parametrizes
the expansion of space. The radius, r,  is transformed to a comoving coordinate.  Furthermore, the radius of
curvature is also affected by cosmic expansion so it can be expressed in terms of the scale factor and a constant k

 T he Friedmann–Lemaître–Robertson–Walker (FLRW) Relativistic Space-Time Metric in terms of "a" is:

where 

Note: "a" is NOT the acceleration, it is the Scale Factor  R(t)/R(t0). 

Based on this metric and its solution of the  E instein's Field Equations give the  Two Friedmann Equations. 
                         The assumption given the Field Equation:   R00 = T00

T he first Equation is :
H

2 8π G ρ Λ c
2+

3

k c
2

a
2

-=

 The Second Equation is:
the Evolution of the 

Cosmic Scale Factor, a.

H  ≡  ȧ/a                                                

and the value as measured today can be denoted with a subscript '0' as H0. Because we measure Hubble's constant to

be positive rather than negative, we know that the Universe is expanding rather than contracting.
We notice from this that the phrase Hubble's constant is a bit misleading. Although certainly it is constant in space due
to the cosmological principle, there is no reason for it to be constant in time. In fact, using it as a more compact
notation, we can write the Friedmann equation as an evolution equation for H(t). as

It is best to use the phrase 'Hubble parameter' for this quantity as a function of time, re-
serving 'Hubble constant' for its present value. Normally the Hubble parameter decreases with time, for instance as the
expansion is slowed by the gravitational attraction of the matter in the Universe.

where a is the scale factor, G, Λ, and c are universal constants. G is Newton's gravitational constant, Λ is the

cosmological constant with dimension length−2, and c is the speed of light in vacuum. ρ and P are the volumetric
mass density and the pressure, respectively. k is constant throughout a particular solution, but may vary from one
solution to another. The symbol "a" is defined as the scale factor which changes with time, ρ and p are the
volumetric mass density and pressure.  They may vary from one solution to another. The expansion of the universe
(ȧ/a) can be measured.  
  In the Friedmann model,   H  ≡  ȧ/a  and is defined as the Hubble parameter, which evolves with time.
 

  Hubble's Law, Expansion, and Redshift
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 Expansion and Redshift

The redshift of spectral lines that we used to justify the assumption of an expanding Universe can also be related
to the scale factor. In this derivation we'll make the simplifying assumption that light is passed between two objects
which are very close together, separated by a small distance dr. We've drawn the objects as galaxies, but we really
mean two nearby points. According to Hubble's law, their relative velocity dv will be

where dλ is going to be positive since the wavelength is increased. The time between emission and reception is given
by the light travel time dt = dr/c, and putting all that together gives

Integrate and we find that λ = ln a + constant, that is λ  a  

where λ is now the instantaneous wavelength measured at any given time. 

Although as we've derived it this result only applies to objects which are very close to each other, it turns out that it is
completely general. It tells us that as space expands, wavelengths become longer in direct proportion. One can think of the
wavelength as being stretched by the expansion of the Universe, and its change therefore tells us how much the Universe has
expanded since the light began its travels. For example, if the wavelength has doubled, the Universe must have been half
its present size when the light was emitted. Redshift observed is the wavelength from the emitted source.

 The redshift as defined in the equation below is related to the scale factor by

where λem and λobs are the wavelengths of light at the 

points of emission (the galaxy) and observation (us). 
1 z+

λobs

λem
=

a tobs( )
a tem( )= z

λobs λem-

λem
=

In order to solve the Friedmann Equation, we need to define the behavior of  the mass/energy density, ρ(a)
of any given mass/energy component.  Recall the basic 

    General Relativity paradigm relating to Cosmology:

Density Determines the Expansion 
Expansion Changes the Density 

H0
2 ΩΛ Λ c

2 3=

ΩΛ
ρΛ
ρcrit

= ΩM

ρM

ρcrit
=

 Density Components:  Each component will lead to a different evolution in redshift and a different Model

 Matter, Radiation, Λ: ρm t( ) ρm0 a
3- t( )= ρrad t( ) ρrad0 a

4- t( )= ρΛ t( ) ρΛ= constant=

ρ0

3 H0
2

8 π G
=

Gyr 3600 24 365.24 10
9

 s 3.156 10
16

 s=:=

Mpc 3 10
19

 km:= H0 73
km

s
Mpc( )

1-:= ΩM
8πG ρ

3 H0
2

= ΩΛ
Λ c

2

3 H0
2

=

 Seconds in a Billion (Giga) Years, Gyr

When a0  = 1 

 Λ  Density Parameter  Matter Density Parameter

 Estimate of  Hubble  H 0 MegaParSec (Mpc)
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 Models in Cosmology

 Consider Several Simple Models
 Refer to Section VIII for Model Details
· k = 0, matter dominated,  Einstein de Sitt er

· k = 0, radiation dominated
· k < 0,  ρ = 0, Milne Model
· k < 0,  ρ > 0
· k  > 0
· Λ dominated

k is the curvature of space

 In General: 
1

H0
13.023 Gyr=

 Example of Models
 Einstein de Sitter Matter Only  ( γ ,  Λ = 0)   Model   See Section VIII.

w=1/2 radiation dominated a(t) ∝ t1/2 

w=0   matter dominated     a(t) ∝ t2/3 

w = -1 vacuum dominated a(t) ∝ eHo t

 De Sitter Universe has a constant curvature
surface embedded in Minkowski space-
time (two-dimensional case)

The Milne Model Universe is simply a
piece of Minkowski spacetime
described in expanding coordinates. 

 Where  dr2  is   transformed to  dχ2

 Classification of Models

(Ignoring Ωrad, since

it is negligible for
most of  the history

of the universe)
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 V. Distances in Cosmology: The Basic Goal of Cosmology and Hubble's Law

 Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies
are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the
faster they are moving away from Earth. The velocity of the galaxies has been determined by the change in the
wavelength, redshift (z), is a shift of the light they emit toward the red end of the visible spectrum. 

The announcement of  Hubble's law in 1929 marks the  birth of Observational Cosmolog y.  It is considered
 the first observational basis for the expansion of the universe, and today it serves as one of the pieces of
evidence most often cited in support of the ΛCDM model. 
 Hubble's Law: The motion of astronomical objects due solely to this expansion is known as the Hubble flow. It is
described by the equation v = H0 x D, with H0 the constant of proportionality—the Hubble constant—between

the "proper distance" D to a galaxy.  The proper distance, D, can change over time, unlike the comoving
distance, and its speed of separation v, that is, the derivative of proper distance with respect to the
cosmological time coordinate.The proper distance can also be defined as the separation between two objects
at a specific moment (simultaneously) in cosmological time.

Suppose R(t) (or a(t)) is called the scale factor of the universe, and increases as the universe expands in a
manner that depends upon  the  cosmological  model  selected. t0  is some reference time, t.  Its meaning is that

all measured  proper distances D(t)  between  co-moving points increase proportionally to R selected.  All
measured  proper distances D(t) between  co-moving points increase proportionally to R. (The co-moving points
(gravitationly bound) are not moving relative to each other except as a result of the expansion of space.)

 Various Measures of Distance.  Refer to Sections V and IX .

Flux is the amount of energy from a source in W/m^2.  Luminous flux, Lm,  is a measure of the perceived power
of visible light produced by a light source or light fitting. Its value is independent of an observer's distance from
an object. The luminous flux accounts for the sensitivity of the eye by weighting the power at each wavelength with the
luminosity function, lx, which represents the eye's response to different wavelengths.   Lm = lx / Area

 Luminosity
 Distance, DL

 Scale Factor, a(t)  Proper Distance  Comoving Distance (z)

s t( ) a t( ) r= Dc DH

0

z

z
1

E z( )






d= dL
L

4π f
=D t( )

D t0( )
R t( )

R t0( )=
H

H0
H t( )=

t
R t( )

d

d

R t( )
=

 Hubble Unit: 

DH c H0= Dc
s t( )

a
= E Z( ) Ωk 1 z+( )2 Ω0m 1 z+( )3+ Ω0r 1 z+( )4+ Ω0Λ+=

 The parameters that appear in Hubble's law,  velocitie s and  distances , are  not directly measured .  
In reality we determine, say, a supernova brightness, which provides information about its distance,  
and the  redshift  z  =  ∆λ/λ  of  its spectrum of radiation. Hubble correlated brightness and parameter z.

 Calculating Luminosity Distance versus Redshift in FLRW Cosmology via Homotopy Perturbation Method

dL = (L/4πf)1/2

 So far, we've found out how to compute different cosmological models. 
 But what good are they?

 Hubble Parameter,   H(t)
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The basic goal of cosmology is to figure out in what model universe do we live. 
Models are basically distinguished by their history of the expansion rate, 

how their scale factor changes as a function of time. 

 If we can figure out which curve of those we live on, we know we'll know about cosmological parameters. 

 This relation is arguably the single most important equation in Cosmology

The expansion Scale Factor R(t) is simply related to redshift, z, that is an observable quantity, and that's an easy
part. The other axis is the time axis. Now unfortunately, this them galaxies do not carry gigantic clocks on them. 
Lookback time can only be inferred from a model. So it's very hard to figure out what is the look back time between us
in some distant point, in a way that can be measured. So instead of that, what we do is we do we transform
coordinates, 

 instead of the look back time, we can use distance which is simply time multiplied by the speed of light. 
Distances in principle can be measured so we flipped the star Game and instead of expansion factor R(t), we use the
redshift, which is an observable quantity. And instead of the time we use a distance, which we can figure out how to
measure in some way.      NOTE: Different redshifts correspond not only to different times, but also to different places.

 So essentially, all cosmological tests boil down to this 
We have to somehow measure a set of distances to a points as a function of redshift. And because the whole
thing just scales with Hubble constant, we only need to determine the shape of that curve. 

So let's figure out how to measure distances in cosmology. A convenient unit of distance is Hubble distance, which is
simply speed of the light divided by the Hubble constant.  The Hubble constant has dimensions of one over time. 

 The Basis of Cosmological Tests

 From ΛCDM Scale Factor Past , a(0), to Now(t0)  From Now D(z0) at Distance D(zpast)

 

 All Cosmological Tests
essentially consist of

comparing some measure
of (relative) distance, 

 D(z)= c*(t0-tz)           

  (or look-back time) 
to redshift, z.  

Absolute distance scaling is
given by the H0.

So that all we need is the
shape of the D(z) curve
 because it scales with H0.

 We need a method to measure Distance. Redshift z can be measured.
 We can do this by measuring the  Luminosity  of an object.  See XVII

 Comoving Distance, D C                                                           

R(t)/R0 = 1/(1+z)                                                                                       
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 Cosmological Tests: The Why and How

• Model equations are integrated, and compared with the observations
• The goal is to determine the global geometry and the dynamics of the universe, and its ultimate fate
• The basic method is to somehow map the history of the expansion, and compare it with model predictions
• A model (or a family of models) is assumed, e.g., the Friedmann-Lemaitre models, typically defined by a set of  
      parameters, e.g.,  H0, Ω0,m , Ω0,λ , q0 , Λ, etc.

• Model equations are integrated, and compared with the observations

 V.  Distances in Cosmology
   

A convenient unit is the Hubble distance or radius,  DH  =  c  H0  =  4.283 h70
-1 Gpc   =  1.322 1028 h70

-1 cm

and the corresponding Hubble time,   tH = 1/H0 = 13.98 h70
-1 Gyr  =  4.409  1017 h70

-1 s  =  13.02 Gyr
 

 At low z’s, distance D ≈ z DH.  

                              But more generally, the comoving distance, DC to a redshift z is: DC DH

0

z

z
1

E z( )






d=

The Hubble Parameter H/H0 = E(Z): E Z( ) Ωk 1 z+( )2 Ω0m 1 z+( )3+ Ω0r 1 z+( )4+ Ω0Λ+=

Note: All Distances and Time scale linearly with the Hubble Constant, H The Hubble Parameter at
a Given Distance is then: The Curvature is determined by Ωk: Ωk 1 Ωr- Ωm- ΩΛ-=

H(z) = H0 E(z)  Λ-CDM Model Parameters (Flat Space k = 0)

Ωr0 8.7 10
5-

:= Ωm0 0.317:= ΩΛ0 0.683:= ΩΛ0 Ωm0+ Ωr0+ 1=

 Dynamical Equation Specifying the Evolution of the Hubble Factor of Our Universe

H

H0
= H_H0 z( ) Ωm0 1 z+( )3 Ωr0 1 z+( )4+ ΩΛ0+:=

 This integral is not solvable analytically and must be calculated numerically.
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 Cosmological Distances:  The Horizon Problem
 There are fundamentally  Two Kinds of Coordinates  in a GR cosmology:

 Proper coordinates:  Stay Fixed,  Space Expands Relative to Them .
Examples:

– Sizes of atoms, molecules, solid bodies
– Gravitationally bound systems, e.g., Solar system, stars,  galaxies …

 Comoving coordinates:  Expand with the Universe.
Examples:

– Unbound systems, e.g., any two distant galaxies
– Wavelengths of massless quanta, e.g., photons
– Stretches relative to the Proper Coordinates

We introduce a scale factor, commonly denoted as R(t) or a(t): a spatial distance between any two
unaccelerated frames which move with their comoving coordinates. 

Computing a(t) and various derived quantities defines the cosmological models.  
This is accomplished by solving the Friedmann Equation

 1. Proper Distances
We define a proper distance, as the distance between two events, A and B, 

in a reference frame for which they  occur simultaneously (tA = tB).

ds( )
2

cdt( )
2

a
2

t( )
dr

2

1 kr
2-( ) r

2
dθ2

sin θ( )
2

dϕ2+( )+








-=

 and set dθ = dφ = 0 and dt = 0, so that s t( )
0

s

s'1




d= a t( )

0

τ

τ
1

1 kr
2+







d=

The proper distance has solution s(t),

where k is a curvature factor.

In a flat universe, the proper distance to an object is just its coordinate distance, 

s(t) = a(t)·r.  
   

Because sin−1(x) > x   and  sinh−1(x) < x, 

 Universe Contracts (Closed) or Universe Expands (Open)
  in a closed universe (k > 0) 

the proper distance to an object is greater than its coordinate distance, 
  while in an open universe (k < 0) 

the proper distance to an object is less than its coordinate distance.
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 The Horizon

Radius of the 
observable Universe

As the universe expands and ages, an observer at any point
is able to see increasingly distant objects as the light from
them has time to arrive. This means that, as time progresses,
increasingly larger regions of the universe come into
causal contact with the observer. 
 The proper distance to the furthest observable point,
the particle horizon— at time t is the horizon distance, sh(t).

Again we return to the Robertson-Walker metric, placing an 
observer at the origin (r = 0) and let the particle horizon for this
observer at time t be located at radial coordinate distance rhor.

This means that a photon emitted at t = 0 at rhor 

will reach our observer at the origin at time t.
Since photons move along null geodesics, ds = 0. Considering
only radially traveling photons (dθ = dφ = 0), we find

0

t

t
1

a t( )






d
1
c

0

τhor

τ
1

1 kr
2+





d=

tL

0

1

a'
1

a' H a'( )






d= tL z( )

0

z

z'
1

1 z'+( ) H z'( )






d= sin c

0

t

t
1

a t( )






d









c

0

t

t
1

a t( )






d

If the scale factor evolves with time as a(t) =  tα, we can see that the above time integral diverges as we
approach  t = 0, if α > 1. This would imply that the whole universe in is causal contact. 
However, α=1/2 and  2/3  in the radiation and matter-dominated regime, so there is a horizon.

 The proper distance from the origin to  rhor  is given by:

for k = 0
shor t( ) a t( )

0

τhor

τ
1

1 kr
2+





d= a t( )

0

t

t
c

a t( )






d=

So shor(t) = 2ct in the radiation-dominated era and shor(t) = 3ct in the matter-dominated era. Notice that these

distances are larger than ct, the distance travelled by a photon in time t. How could this be? The reason lies in
our definition of proper distance, as the distance between two events measured in a frame of reference where those two
events happen at the same time.
To understand this, consider a photon in emitted at comoving radial coordinate rhor at time t = 0. We want to know

what is the proper distance of that photon from our position, at r = 0, at a later time t.  The coordinate of the photon at
time t may be found by integrating

0

t

t
c

a t( )






d

0

τhor

τ
1

1 kr
2+





d=

The proper distance to the furthest observable point -
the particle horizon - at time t is: 

 Horizon Distance:  sh(t)

 The lookback time tL(z) to a source at any redshift z

is the time photons needed to travel with speed c
from the source to the observer at z = 0. In a
homogeneous universe, this global quantitity is just the
sum of the small locally measured proper times dt. In
terms of the scale factor a and H = d ln(a)/dt, it is.

for k = 1 for k = 0
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r rhor
2c

H0

t

t0









1

3
-=

where t0 = 2tH/3 is the present age of the universe. Recalling that rhor = 2c/H0, and that the proper distance in a

flat universe is just s(t) = a(t) · r, we find that the proper distance of the photon from Earth as a function of time is

s t( )
2c

H0.

t

t0.









2

3
t

t0.
-











:= for k = 0

Proper distance as a function of tinie of a photon emitted from the present particle horizon at the time of the
ΛCDM. The proper distance is expressed as. function of 2c/H0, the present horizon distance in a flat universe.
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We can now see that the initial expansion actually carried the photon away from Earth. 
Although the photon’s co-moving coordinate was always decreasing from an 
initial value rhor towards Earth’s position at r = 0, the scale factor a(t), (or R(t)), increased so rapidly that

 at first the proper distance between the photon and Earth increased with time.

 Expansion and the Hubble’s Law
Consider a point at a comoving distance x.  At some time t it will be at a radial distance r(t) = a(t) x , where
a(t) is the expansion factor.  We will designate values for “here and now” with a subscript 0,
t0 = now, and a0 = a(t0 ) = 1.   The recession velocity is:

Where is the normalized expansion rate

Which is the same as the Hubble’s law:

H0 is the value of the expansion rate here and now.  

Note that it is not a constant, but it depends on a(t). 

As before, we consider zero curvature models.Substituting for a(t) we obtain:
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 Cosmological Distance Tests for Expanding vs. Static Universe
The James Webb Space Telescope (JWST) is capable of detecting objects at record-breaking redshifts, z ≈ 15. This
is a crucial advance for observational cosmology, as at these redshifts the 

 differences between alternative cosmological models manifest themselves in the most obvious way. 

 Cosmological Tests  
We shall focus primarily on the angular size– redshift relationship, θ(z), such as the Tolman surface-brightness test, the
cosmological time dilation; number density–redshift relationship. 
Cosmological models can be divided in two groups: 
1. Expanding universes based on the Friedmann–Lemaitre–Robertson–Walker (FLRW) metric with a time-dependent
scale factor; 
2. static universes based, e.g., on the metric including a scale factor in metric’s time component. 
The commonly accepted model of the first type is the standard ΛCDM cosmological model, which best fits
observational data among other expanding-Universe models  

  Compare Different Cosmological Models: Expanding Universe ΛCDM vs. Static
Comoving, DCM(z), Luminosity Distance, dL(z),  Angular Diameter Distance, DA(z)

Ω0m 0.3:= Ω0Λ 0.7:=
DCM z( )

1 z+( ) 1-

1

aξ
1

Ω0m aξ Ω0Λ aξ4+







d:=

1Gpc 3.26GLightYear=
 Flat Universe:  Einstein de Sitter (EDS) 

Angular Diameter Model
dL z( ) 1 z+( ) DCM z( ):= DA z( )

DCM z( )

1 z+
:= DAds z( ) ln 1 z+( ):=
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 Distance Formulas: Light Travel Dltt, Present Dnow, Angular DA and Luminous DL 

Astronomy 140 Lecture Notes, Edward L. Wright, 2008, https://astro.ucla.edu/~wright/intro.html

Fitting these formulae to the existing supernova data gives a set of contours of Δχ2 as a function of Ωmo and Ωνo

(ψ is the hyperbolic angle)

 Four Simple Cases 
 and One Hard Case:

 For Each:
Dnow

Dllt

DA,

DL

 One of the 5 Cases

Ω 0=

Ωm 1=

Ωr 1=

Ων 1=

 Only DA and DL

Ωm 2=
Luminosity distance vs. redshift for high redshift Type Ia supernovae.

Distance modulus (m − M) relative to an Ω = 0 model vs. redshift for high redshift Type Ia supernovae. The
data points are binned values from the Kowalski et al. (2008, arXiv:0804.4142) union catalog of supernovae.
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 VI. Newtonian Energy Derivation of the Rate of Expansion, H

εc t( ) ρc c
2=

Ωcomponent

ρcomponent

ρc_z0
=

r t( ) a t( ) x= x
r t( )

a t( )
= v r t, ( )

d

dt
r t( )=

da

dt
x=

da

dt

r

a
=

a

a
r= H t( ) r=

Note: "a" is NOT the acceleration, it is the Scale Factor. 

  By Conservation of Energy, E = Constant   Note:
In the Newtonian Model
Space is Euclidean and Gravity
is a Force that causes massive
bodies to accelerate, while in
the Einsteinian View, Gravity is
a manifestation of the
Curvature of Spacetime. In the
 limit of weak spatial curvature

 or small (v/c)2, the Newtonian
View gives approximately the
same results.

Energy
1

2
m v

2
GMm

r
-=

1

2 t
r

d

d









2
GM

r
-

Energy

m
- 0=

M = 
4

3
π r

3 ρ r t( ) a t( )
x

r
=

1

2

1
r t

r
d

d










2
G M

r
3

-
Constant

r
2

-

 Rearrange to Friedmann Equation:

•If k = 0 (flat universe): ά2 > 0, universe

  expands for ever, but as  α  ∞,  ά  0

• If k < 0 (open universe):           ά2 > 0,

      universe expands for ever, but  ά2  c
• If k > 0 (closed universe):  

           the expansion peaks when:  ά2 = 0.

H
2 8π G

3
ρ

2 Energy

a
2

-=

Note: ά is a contracting sphere if ά < 0
                  and k is proportional to Energy.

  The Two Friedmann Equations can be reduced to:

ρΛ = Cosmological 

Constant Energy Density 
Expansion = Density - Curvature ρtot = Total Energy Density

For a given value of H, there is a special value of the density which would be required in order
 to make the geometry of the Universe flat, that is,  k = 0 . This is known as the critical density ρc

Note that to get the results in the FWLR form, we 
replaced the Energy Density term εc(t) with the mass density, ρ.

 Sources of Matter and Energy
In General Relativity, all of the sources of matter and energy are included and contribute to the total energy
density, ρtot. The energy density today of each component is  Normalized to the Critical Density, ρc,

(See below: Ωcomponent) that is used in the definition of  the corresponding “Omega parameter”, Ω.    

Thus we have:  Ω  =  Ωbaryon + Ωcdm + Ωradiation + ΩDE

Here  Ωbaryon is the baryon content,  Ωcdm  is the amount of cold dark matter,  Ωradiation  is the radiation

content, and  ΩDE  is the contribution from dark energy. If  Ω = 1 that means the density is equal to the critical

density, ρc, at z = 0, so we have a flat Universe (k = 0).

Consider a test particle of mass m as part of an expanding spherical shell of radius r & total mass M. 
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 VII. Equations and Values of Constants for Cosmological Parameters: 
 Hubble & Scale Factors, z, Ωs, Density, Temp, V

 

Definitions and Equations below came from: Introduction to Cosmology, by Barbara Ryden2  

 Plots of these Cosmic Parameters are on the Following Pages
 Define Constants

Seconds per Billion (Giga) Years

c 299792.458
km

s
= G 6.67 10

11-


m
3

kg s
2

:= H0
1

4.355 10
17

 s

:= Gyr 3600 24 365.24 10
9

 s:=

H0 68.886
km

s
Mpc( )

1-=

 Create an Exponential Time:  Order of Magnitude, OM,  Scale Factor ai,  Spanning  26 Orders of Magnitude :

N26 10
26-

:= OM 26:= i 0 100 OM 400+..:= ai 10
0.01 i OM-

:= a
0

1 N26= a
3000

10000=

da_dt a( ) H0

Ωr0

a
2

Ωm0

a
+ ΩΛ0 a

2+:=

 Normalized radiation energy density for photons + neutrinos 

In flat universe total density ρ = critical density ρ0

ρ0

3 H0
2

8 π G
= ρ0 8.644

kg

m
3

10
27-

= Ωr0
4.005 10

14-


ρ0 c
2

1 0.69+( )
J

m
3

:= Ωr0 0=

 Curvature Parameter

ΩΛ0 1 Ωr0- Ωm0-:= ΩΛ0 0.683=Ωm0 0.268 0.049+:= Ωm0 0.317=

 DEFINE:  Ω, H, da_dt, Proper time, t, Diameter, Velocity, Mass Ratios, H(z)

 Hubble Parameters

Dark energy for flat universe H i H0

Ωr0

ai( )4
Ωm0

ai( )3
+ ΩΛ0+:=

Hi ≈ tGUT
-1 ≈ 1036 sec-1 

 Scale Factor, a  Redshift,
 z a

1

z 1+
=

a t( )
1

1 z+
= z

1
a

1-=

Friedmann equation for a flat universe
 after inflation ends 

and radiation epoch begins

t
a

d

d
=

t

 Densities and Curvature of our Universe

 Inflation, i 

 Critical Density

 Dark matter + baryonic matter
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Tempi

2.725
ai

:=

Inflation Era 10-35 to 10-33

ti

0

a
i

a
1

da_dt a( )






d:= tLi

0

z
i

zε
1

1 zε+( ) H zε( )






d:=

z
t
100 OM

Gyr
13.096=

t
3000

Gyr
165.792=

Now t
100 OM

s
1-:=

X33 10
33-

:= t
1

2.443 s X33= t
3000

165.792 Gyr=

 Numerical Integration:  Integral_dD (a, b, n)

dD a( )
2 c

a da_dt a( )
:=

Integral_dD a b, n, ( )
dD a( ) dD b( )+

2
b a-( )








n 1if

h
b a-

n
 n 1>if

h

2
dD a( ) 2

1

n 1-

i

dD a i h+( )
=












+ dD b( )+












otherwise

:=

 Calculate the Diameter, D, in Meters of Observable Universe Dou = 2*comoving distance

dD a( )
2 c

a da_dt a( )
:=

Initial 1 10
100-

:= da_dti da_dt ai( ):=

Doui Integral_dD Initial ai, 500, ( ):= Dou
0

279.757 m=
Dou

100 OM

c Gyr s
88.602

1

s
=

Di
ai

a
0

Dou
0

:= D
0

279.757 m=
D

100 OM

Dou
100 OM

33.375=

Recombination_Time 3600 24 365.24 370000:=

 Calculate Recessional Velocities

vrou
i
 H i

Doui

2
:= Vou

4π

3

Dou

2








3
:=

 Temperature (K)

V i
ai

a
0









3

Vou
0

:= vri H i
Di

2
:=

 Calculate the Cosmic Proper Time (t) and Lookback time (tL).  Inflation Epoch Ends at 10^ -  33  seconds

 D = Scaled Up Diameter of Universe that was formerly observable at 10 -33  second

Distance to a galaxy is defined as the proper distance dp(t). The length of time light has traveled t0 - te is lookback time, tL.
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 Mass Densities: Radiation, Mass, Λ, and Total.     See Density (ρ) Plots in Section XXVIII

ρri
Ωr0

ai( )4
ρ0:= ρm i

Ωm0

ai( )3
ρ0:= ρΛi ΩΛ0ρ0:= ρ ρr ρm+ ρΛ+:=

 Mass (Mou) and Energy (Eou) of Dark and Baryonic Matter and Energy

Moui ρmi Voui:= Eroui ρri c
2 Voui:= Emoui ρm i c

2 Voui:= EΛi ρΛi c
2 V i:=

Mρvi
ρmi V i:= Eri ρri c

2 V i:= Emi ρm i c
2 V i:= EΛoui ρΛi c

2 Voui:=

Eou Erou Emou+ EΛou+:= E Er Em+ EΛ+:=

 Radiation - Matter 
 Equality

 Matter - Lambda
 Equality
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+= ainflation t( ) e
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0
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a
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Ω0m a Ω0Λ a
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




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t_tH0 1000 0.1, 0.7, 0.2, ( ) 0=

 Comoving Distance
DCz z Ω0m, Ω0Λ, Ω0r, ( )

1 z+( ) 1-

1

aξ
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Ω0m aξ Ω0Λ aξ4+ Ω0r+



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


d:=

z
1
a

1-=

 Apparent Magnitude-Redshift Relation (Mukhanov)  Eq 2.81  (See Section X of this Paper) 

Φ2 χem( ) =χem z Ωm, ( )

0

z

zξ
1

Ωm 1 zξ+( )3 1 Ωm-( )+







d:=χ

 Bolometric Flux is the Flux Integrated over Entire Spectrum
 Then the Bolometric Magnitude for k=0 is Given by:

photon emitted
at time tem

 Note: For k = 0 

Φ χem( ) χem=
mbol z Ωm, ( ) 5 log 1 z+( ) 5 log χem z Ωm, ( )( )+ 25+:=

 Plots of the Ratio of Lookback time to H0   (tL_tH0)  and the Ratio of Time to H0,  (t_tH0)

 For Comoving Distance, χem

tL_tH0 z Ω0m, Ω0Λ, Ω0r, ( )

0

z

zξ
1

1 zξ+( ) Ω0m 1 zξ+( )3 Ω0Λ+ Ω0r 1 zξ+( )4+







d:=

tL_tH0 1000 0.3089, 0.6911, 0.001, ( ) 0.952=
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   Exploring the Behavior of Some Cosmology Models by Plotting
 Their Parameters Given by the Definitions in Section VII.

 

Plots of Cosmic Density Components, Scale Factor, Recession Velocity, Hubble Factor
Cosmic Scale Factor, Components of the Energy of the Universe
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 Plot in GYears

 For a radiation-dominated critical density Universe,  H0 = 1/2t
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        The Plot shows that for z > 10, 
z contributes little to the age of the universe

tBB 13.8Gyr:=

tBB tL_tH0 10 0.3, 0.7, 10
10-

, ( ) 12.844 Gyr= z
1
a

1-=

  Dynamics of the expansion

To the observer, the evolution of the scale factor is most directly characterized by the change with redshift of the
Hubble parameter and the density parameter; the evolution of H(z) and Ω(z) is given immediately by the  Friedmann

 Equation in the form  H2 = 8 πGρ/3 − kc2/R2. Inserting the above dependence of   ρ  on  a   gives

 This is a crucial equatio n, which can be used to obtain the  Relation between Redshift and Comoving Distance.
The radial equation of motion for a photon is  R dr = c dt = c dR/Rdot = c dR/(RH).    

With R = R0 /(1 + z ), this gives

 This relation is arguably the single most important equation in cosmology ,  
since it shows how to  relate comoving distance to redshift, Hubble constant and density parameter.

The comoving distance determines the apparent brightness of distant objects, and the comoving volume
element determines the numbers of objects that are observed. These aspects of observational cosmology are
discussed in more detail below.

 2023 Estimate z=10  is 13.30 Gyr
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Lastly, using the expression for H(z) with Ω(a) − 1 = kc2/( H2 R2)  gives 

 the redshift dependence of the total density parameter:

 This last equation is very important. 

It tells us that, at high redshift, all model universes apart from those with only vacuum energy will tend to look like
the Ω = 1 model.
  

This is not surprising given the form of the Friedmann equation: provided ρR 2 → ∞ as R → 0, the −kc 2 curvature
term will become negligible at early times. 
If Ω  1, then in the distant past Ω(z) must have differed from unity by a tiny amount: the density and rate of
expansion needed to have been finely balanced for the universe to expand to the present. 

This tuning of the initial conditions is called the flatness problem and is one of the motivations for the applications of
quantum theory to the early universe.

 Evolution of the Hubble Factor:  Mass Conservation of non-relativistic matter implies ρm∝  a−3 = (1 + z)3 . 

In the ΛCDM model, dark energy is assumed to behave like a cosmological constant: ρΛ∝  a0 = (1 + z)0 . 

The density of radiation (and massless neutrinos) scales as ρr∝  a−4 = (1 + z)4  because the number density 

∝of photons is  a−3 = (1 + z)3 and the mass E/c2 = hν/c2 ∝ of each photon scales as E  λ−1 ∝  (1 + z)1 ∝  a−1.    
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 Calculated Values

 Dynamical Equation Specifying the Evolution of the Hubble Factor of Our Universe
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 VIII. Multiple-Component Universes:    Parameter (t0H0 ) Contour Vs. Densitites

 ASTROPHYSICS AND COSMOLOGY
Juan Garcıa-Bellido, Theoretical Physics Group

Define y
a

a0
= τ H0 t t0-( )=

 Then Friedmann's Equation can be written: 

Equation 56
τ

y
d

d
1

1
y

1-


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


ΩM+ y

2 1-( ) ΩΛ+=

With Initial Conditions

y 0( ) 1=
τ

y 0( )d

d
1=

  Therefore, the present age t 0  is a function of the other parameters, 
t0 = f(H0, ΩM, ΩΛ), determined from

t0H0 ΩM ΩΛ, ( )

0

1

y
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






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






d:=
t0H0 0.3 0.7, ( ) 0.964=

and the time relationship 

 Calculate a Matrix Time0H0 (t0H0)  of Values: 
of  t0H0 for ΩM and ΩΛ Ranging from 0 to 1.5

Time0H0 TML 0 0 0( )

m 0

l 0

m m 0.01+

l 0

th t0H0 m l, ( )

tml m l th( )

l l 0.01+

TML stack TML tml, ( )

ll 0 1, 100..for

mm 0 1, 170..for

TML

:=

min Time0H0
0 ( ) 0=

min Time0H0
1 ( ) 0=

min Time0H0
2 ( ) 0=

max Time0H0
0 ( ) 1.71=

max Time0H0
1 ( ) 1=

max Time0H0
2 ( ) 2.062=

rows Time0H0( ) 17272=

VXPhysics 44



 Assemble Contour Line Points of Curves with Given t0H0 Values
Find Those Contour Values of Density Parameters, ΩM and ΩΛ, 

of Matrix Time0H0  that Give a t0H0 values (T) ranging from 0.65, 0.7 ... up to 1.2
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 Einstein-de Sitter (EdS) Model Universe:    Flat and Matter-Only FLRW Universe

The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. On
first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance,
Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding
universe known as the Friedmann–Einstein universe. In 1932, Einstein and De Sitter proposed an even simpler cosmic
model by assuming a vanishing spatial curvature as well as a vanishing cosmological constant. In modern
parlance, the Einstein–de Sitter universe can be described as a  Cosmological Model for a Flat Matter-Only
Friedmann–Lemaître–Robertson–Walker metric (FLRW) universe.

In the model, Einstein and de Sitter derived a simple relation between the average density of matter in the universe and

its expansion according to H0
2 = кρ/3, where H0 is the Hubble constant, ρ is the average density of matter and к is the

Einstein gravitational constant. The cosmic time t as a function of scale factor, a, is given by Expression:
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 EdS: T he cosmic time t as a function of the scale factor, a, is given by the Expression:
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 Plots of  a(t)  versus t for the closed universes with  Ω 0  = 1.1, 1.2, 1.5 ,
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 See Section XXXII on the Fine Tuning Flatness Problem
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 Temperature Jumps at Phase Transitions.  Temperature at Recombination,  Eth . 

A New Version of the Lambda­CDM Cosmological Model, with Extensions and New Calculations,  
Journal of Modern Physics, 2024, 15, 193-238, Jan Helm
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 Measuring Cosmological Parameters

Using the normalization a(t0) = 1, the expansion can be written:

the  parameter  q0  is  a  dimensionless  number  called  the  deceleration parameter, defined as

The  relation between  the  deceleration  parameter  q0  and  the  density  parameters  of  thedifferent

components of the universe  For the current BB Model:

q0 0.53:=

In  principle,  determining  H0  should  be  easy.  For  small  redshifts,  the relation  between  a  galaxy’s1.

distance  d  and  its  redshift  z  is  linear  Equation:    c z = H0 d    where    z = 1/a(te)  -  1

where c (t0 ­ te) is the proper

distance in a static universe.

substituting the dp(t0) equation

into the Taylor Expansion gives :

Cosmologists would like to know the scale factor a(t) for the universe. For a model universe whose contents are
known with precision, the scale factor can be computed from the Friedmann equation. Finding a(t) for the real
universe, however, is much more difficult. The scale factor is not directly observable; it can  only  be  deduced
indirectly  from  the  imperfect  and  incomplete observations that we make of the universe around us. If we knew
the Energy Density ε for each component of the universe, we could use the Friedmann equation to find the 
scale factor a(t). The argument works in the other direction, as well; if we could determine a(t) from
observations, we could use that knowledge to find ε for each component. Let’s see, then, what constraints we can
put on the scale factor by making observations of distant astronomical objects. 

Since determining the exact functional form of a(t) is difficult, it is useful, instead, to do a Taylor series
expansion for a(t) around the present moment. Keeping the first three terms of the Taylor expansion, the scale
factor in the recent past and the near future can be approximated as

Although  H0  and  q0  are  themselves  free  of  the  theoretical  assumptions underlying  the  Friedmann  and

acceleration  equations,  we  can  use  the acceleration equation to predict what q0 will be in a given model universe.
If our model universe contains N components, each with a different value of the equation-of-state parameter wi, the

acceleration equation can be written

Thus,  if  you  measure  the  distance  d  and  redshift  z  for  a  large  sample  of galaxies, and fit a straight line to a
plot of cz versus d, the slope of the plot gives you the value of H0. In practice, the distance to a galaxy is not only

difficult to measure, but also somewhat difficult to define. The proper  distance  dp(t)  between  two  points  was
defined  as  the  length  of  the spatial geodesic between the points when the scale factor is fixed at the value a(t).
The proper distance is perhaps the most straightforward definition of the spatial  distance  between  two  points  in
an  expanding  universe.  We can get an approximate form by taking the first two terms of the Taylor expansion. 
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 Light-cone structure of the FLRW space

Let us consider the K = 0 case, for simplicity. Moreover, consider also dΩ = 0. In this case, the radial coordinate is also

the distance. Then, putting ds2 = 0 in the FLRW metric gives the following light-cone structures. 
 Cosmic time-comoving distance 

From the above FLRW metric, the condition ds2 = 0 gives us:

We put our observer at r = 0 and t = t0 . The plus sign in the above equation then describes an outgoing photon, i.e. the

future light-cone, whereas the negative sign describes an incoming photon, i.e. the past-light cone, which is much more
interesting to us. So, let us keep the negative sign and discuss the shape of the light-cone. Assume that a(0) = 0.
Therefore, the slope of the past light-cone starts as −a(t 0 ), which we can normalise as −1, i.e. locally the past
light-cone is identical to the one in Minkowski space. However, a goes to zero, so the light-cone becomes flat,
encompassing more radii than it would for Minkowski space. See Figure below . We can show this  analytically by
taking the second derivative of  the above with the minus sign.

 Space Time Diagram  Comoving Distance and Normal Time
 Cosmic Age/Lookback Time - Comoving distance

 Space-time diagram and light-cone structure for the FLRW metric
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     Cosmic time (Gyr) - comoving distance

 Cosmic age - proper distance

This shows the space–time diagrams of our past light cone in both the usual form (a) and conformal form (b), in which
one expands the spatial distances in order to see the causal  structure. The light cones are then at ±45°, making clear the
observational and causal limits;  any observation beyond the visual horizon is impossible. The Hubble distance is where
galaxies  recede at the speed of light (v  = c). (Mark Whittle, University of Virginia)
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 IXA.   Stellar Classification Systems - MK, Harvard,  Hertzsprung–Russell

 Luminosity Defins. - Absolute & Apparent Magnitudes, Distance Modulus, Luminous Flux
Magnitude, in astronomy, is a measure of the brightness of a star or other celestial body.
The distance modulus, μ, is a way of expressing distances that is often used in astronomy. It describes distances
on a logarithmic scale based on the astronomical magnitude system. The apparent magnitude, m, of a star is the
magnitude it has as seen by an observer on Earth. The distance modulus, μ,  is defined  as μ = m - M (ideally,
corrected from the effects of interstellar absorption) where M, is the absolute magnitude, of an astronomical object.

L⊙ 3.846 10
26

W:=

Irradiance (or flux density) is a term of radiometry and is defined as the radiant flux received by some surface 

per unit area. In the SI system, it is specified in units of W/m2.

Absolute magnitude M is defined as the  apparent magnitude of an object when seen at a distance of 10
parsecs. If a light source has luminosity L(d) when observed from a distance of d parsecs, and luminosity
L(10) when observed from a distance of 10 parsecs, 
the inverse-square law is then written like:  The apparent m and absolute magnitude M

 and flux, F(d),  are related by:

 Estimating Distance to Star from Apparent Brightness and Hertzprung-Russell Diagram
One can use detailed observations of nearby stars to provide a means to measure distances to more
distant stars. Using spectroscopy, one can measure precisely the colour of a nearby star; using
photography, one can also measure its apparent brightness.

Using the apparent brightness, m, the distance,
and inverse square law, one can compute the
absolute brightness of these stars. Ejnar
Hertzsprung (1873-1967) and Henry Russell
(1877-1957) plotted this absolute brightness
against color for thousands of nearby stars in
1905-1915.  This yields the famous
Hertzprung-Russell diagram. See Section IX.
Once one has this diagram, one can use it in
reverse to measure distances to more stars
than parallax methods can reach. For any star,
one can measure its colour and its apparent
brightness and from the Hertzprung-Russell
diagram, one can then  infer the Absolute
 Brightness. From the apparent brightness and
absolute brightness, one can solve for distance.

M = ­2.5 log(F(d))

 Magnitudes of Some Cosmological Light Sources

The distance modulus m − M can be used to 
 determine the distance to a star using the equation:

M = m - 5 log(d/10)

Luminous flux is a measure of the power of visible light produced by a light source or light fitting. It is
measured in lumens (lm). Luminosity, in astronomy, the amount of light emitted by an object in a unit of time,

or its power (W). For example, the luminosity of the Sun is 3.846 × 1026 watts.  Luminosity is an absolute
 measur e of  radiant power; that is, its value is independent of an observer's distance from an object
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 Luminosity Distance

As shown by Terrell the luminosity distance and absolute magnitudes can be written
for each case of the deceleration parameter (q0) and is often expressed as: 

E z Ωr, Ωm, ΩΛ, Ωk, ( ) Ωk 1 z+( )2 Ωm 1 z+( )3+ Ωr 1 z+( )4+ ΩΛ+:=

 Luminosity Distance (Model Dependent)

ΩK Ωr Ωm, ΩΛ, ( ) 1 Ωr- Ωm- ΩΛ-:=ΩK 0 0.05, 0, ( ) 0.95=

ΩK 0 0.2, 0.8, ( ) 0=
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"The luminosity distance equation in Friedmann cosmology", Terrell, James

 The most fundamental distance scale in the universe is the Luminosity Distance, 

Luminosity Distance: dL = (L/4πf)1/2

    

where f is the observed flux (sun = 1368 W/m2) of an astronomical object and L is its luminosity.

In relativistic cosmologies, observed flux (bolometric, or in a finite bandpass) is:
   

f = L/ [(4π DL
2)(1+z)2] 

One factor of (1 + z) is due to the energy loss of photons, and one is due to the time dialation of
the photon rate.

A luminosity distance is defined as DL = D (1 + z), so that f  =  L/(4π DL
2).

For a specific flux, however, 
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 Stellar Classification Systems - MK, Harvard,  Hertzsprung–Russell

 Wikipedia - "In astronomy, stellar classification is the classification of stars based on their  spectral characteristics.
Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum
exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or
molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines
vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences.
The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the
photosphere's temperature.
Most stars are currently classified under the  Morgan–Keenan (MK) system using the letters O, B, A, F, G,
K, and M, a sequence from the hottest (O type) to the coolest (M type). Each letter class is then subdivided using a
numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to
cooler). The sequence has been expanded with classes for other stars and star-like objects that do not fit in the
classical system, such as class D for white dwarfs and classes S and C for carbon stars.
In the MK system, a luminosity class is added to the spectral class using Roman numerals. This is based on the width
of certain absorption lines in the star's spectrum, which vary with the density of the atmosphere and so distinguish giant
stars from dwarfs. Luminosity class 0 or Ia+ is used for hypergiants, class I for supergiants, class II for bright giants,
class III for regular giants, class IV for subgiants, class V for main-sequence stars, class sd (or VI) for subdwarfs, and
class D (or VII) for white dwarfs. The full spectral class for the Sun is then G2V, indicating a main-sequence star with
a surface temperature around 5,800 K.

 Harvard spectral classification
The Harvard system is a one-dimensional classification scheme by astronomer Annie Jump Cannon, who re-ordered
and simplified the prior alphabetical system by Draper (see History). Stars are grouped according to their spectral
characteristics by single letters of the alphabet, optionally with numeric subdivisions. Main-sequence stars vary in
surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars can have temperatures above
100,000 K[citation needed]. Physically, the classes indicate the temperature of the star's atmosphere and are normally
listed from hottest to coldest."

 A simple chart for classifying the main star types using Harvard classification
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 The Hertzsprung–Russell (H-R) diagram:  Absolute Magnitude vs. Classification 
Is a scatter plot of stars showing the relationship between the stars'  absolute magnitudes or  luminosities versus their
 s tellar   classifications or effective temperatures. The diagram was created  in 1911 and represented a major step
towards an understanding of stellar evolution. The H-R diagram is quite easy to understand if you can interpret what each
axis means.  The horizontal axis measures the surface temperature of the star in Kelvin.  Stars on the right of the horizontal
axis are cooler and redder in colour than the stars on the left, with temperatures of around 3000 Kelvin as opposed to
25,000 Kelvin upwards.  The vertical axis on the left measures  luminosity using the Sun as our comparis on.  So, a
luminosity of one is equal to one Sun.  The vertical axis on the right measure’s absolute magnitude, or brightness, crucially
considering a star’s distance.  The bottom axis identifies spectral type, or, spectral class of a star, which is another way to
describe the colour and temperature.  Plotting Cepheids, RR Lyrae, Mira and Semiregular pulsating variable stars
on the H-R diagram is not a single plot like non-pulsating stars. During their evolution through the instability strips they are
pulsationally unstable – expanding and brightening, then contracting and become dimmer. The instability strips for
Miras and Cepheids are especially elongated because of these expansions and contractions. Some pulsating variable stars
change in temperature by two spectral classes during one cycle from max to min. To show the entire cycle of change for
individual variable stars, it is necessary to plot them twice on the H-R diagram – both at max and min absolute magnitude.
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 Spectral Analysis of Different Types of Stars
 Dwarf Stars:  Main Sequence stars of low class V  Luminosity . Dwarf stars are fainter than giant stars. Blue (Types O and
B), Yellow (mass like sun - Type G), Orange (K-type), Red (cooler - low mass K to M). White (remains of a dead star,
electron degenerate, not massive enough to be Neutron Star), Black a White dwarf cooled so no longer emits visible light.
Universe not old enought for Black dwarfs. Brown dwarf: substellar object not massive enough to fuse hydrogen to helium. 

 Main Sequence Star Types by Temperature
Our Bright Astronomers Frequently Generate Killer Mnemonics!

 Get Star Data From PV Light House  Spectral Irradiance Measurement  Library

 htps://www2.pvlighthouse.com.au/resources/optics/spectrum%20library/spectrum%20library.asp x

 B Type Star Spectral Irradiance Measurements

StarTypeB5 READPRN "B5 Star Spectrum.txt"( ):= λsB StarTypeB5
0 

:=

 G Type Star  Spectral Irradiance Measurement

StarTypeG READPRN "G Star Spectrum3.txt"( ):= λsG StarTypeG
0 

:=

 Note: For these particular Type B and G stars, the peaks are consistent with Type, but shapes are different.
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 G Type Star (Sun) Spectral Irradiance Data - Sun AM0 & AM1.5
 Get Star Spectral Irradiance Data From Spectrum Library

 htps://www2.pvlighthouse.com.au/resources/optics/spectrum%20library/spectrum%20library.asp x

AM0 and AM1.5 Correspond to the Sunlight at the Top of Atmosphere and at Sea Level, Respectively.

SolarSpec0 READPRN "Solar AM0 Spectrum 280 -2500 2nm.txt"( ):= SS0 SolarSpec0:=

SolarSpec1.5 READPRN "Solar AM1-5g Spectrum 280 -2500 2nm.txt"( ):= SS1.5 SolarSpec1.5:=

 P lanck's Spectral Radiation Law, B(λ,T) 

h 6.6260693 10
34-

 joule sec:= kb 1.3806505 10
23-


joule

K
:= λs SolarSpec0

0 
:=

B λ T, ( )
2h c

2

nm λ( )
5

1

e

h c

nm λ kb T
1-

:= Tsun 5777K:=

Normalize Units B(λ,T): Units 2 B 500 Tsun, ( ) 1-
:= BN λ( ) B λ Tsun, ( ) Units:=

 Find Peak Wavelength for the AM0 Sun from its  Blackbody Spectrum 

max SolarSpec0
1 



 2.075= match max SolarSpec0

1 



 SolarSpec0

1 
, 



 91( )=

SolarSpec0
0 



91

462= λpeak 462:= BN 462( ) 1.967=

The Sun's peak wavelength is between 483-504 nm (Green)

 Wien's Displacement Law:  Peak Wavelength Law  

λmax T( )
0.2898cm K

T
:= λmax Tsun( ) 501.644 nm=
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 IXB. The Scale of the Universe
The Hubble Length, DH =  equals c/H0, and the Hubble time, tH equals 1/H0, gives the approximate spatial and temporal

scales of the universe. 
H0 is a scale parameter and is independent of the "shape parameters" (expressed as density parameters)  Ωm,  ΩΛ, Ωk

w, etc., which govern the global geometry and dynamics of the universe. 
Distances to galaxies, quasars, etc., scale linearly with H0, D  ≈ c z /H0. They are necessary in order to convert

observable quantities for example, fluxes, angular sizes into physical ones (luminosities, linear sizes, energies, masses, etc.)

 Distance Ladder: Methods
  Methods yielding absolute distances:

Parallax (trigonometric. secular. and statistical)
The moving cluster method - has some assumptions
Baade-Wesselink method for pulsating stars
Expanding photosphere method for Type ll SNe Mfidel
Sunyaev-Zeldovich effect           <==  Model dependent!d
Gravitational lens time delays      <== Model dependent!

 Secondary distance indicators:
      “standard candles,  requiring a calibration from an absolute method applied to local objects -       
           The Distance Ladder:                                                         

Pulsating variables: Cepheids. RR Lyrae.
Main sequence titling to star clusters,    Brightest red giants
Planetary nebula luminosity function
Globular cluster luminosity function
Surface brightness fluctuations
Tully-Fisher, Da - σ, FP scaling relations for galaxies

Type 1a Supernovae

 Telescope Resolution:
Hubble 0.05 arcseconds
Very-long-baseline interferometry (VLBI) 25 μarcsecs  

Diameter of our Local Group of galaxies is
 ≈ 3 megaparsecs, and it contains at least 
80 galaxies, most of which are dwarf galaxies

 Telescope Resolution:
Hubble 0.05 arcseconds
Very-long-baseline interferometry (VLBI) 25 μarcsecs  

   1        10       100     1000       104      105      106     108        109         1010     1011                                pc

 Main Sequence Fitting for Star Clusters

z = 20           
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 Main Sequence Fitting for Star Clusters

 Luminosity (distance dependent) vs. 
 temperature or color (distance independent) 

 Can measure distance to star clusters 
(open or globular)  by fitting their main sequence 
with clusters with known  distances from Gaia. 
 The apparent magnitude difference gives the ratio 
of distances, as long as we know the reddening(extinction)!
 For globular clusters we use parallaxes to nearby
subdwarfs (metal-poor main sequence stars)

 Pulsating Variables
 Stars in the instability strip in the HR diagram.
 All obey empirical period - luminosity distance
independent vs.dependent) relations which can be
calibrated to yield distances. 
 Different types (in different branches of the
HRD, different stellar populations) have different
relation. 
 Cephelds are high-mass, luminous, upper MS,
Pop. I stars.
 RR Lyrae are low-mass, rnetal-poor  (Pop. II),
HB stars, often found in globulars. 
 Long-period variables (e.g., Miras) pulse in a
fashion that is less "well understood."

 Cepheids
  

 Luminous  (M ≈ -4 to -7 mag), pulsating variables
high mass stars on the instability strip in the H-R
diagram. Henrietta Leavitt (1912) found in a
period-luminosity relation for Cepheids in the SMC:
brighter ones have longer periods

  Advantages: 
Bright and easily seen in galaxis(out to ≈25 Mpc with
the HST, stellar plusation is well understood. 

  Disadvantages: 
Relatively rare, period may depend en rnetallicity or
color, need runlet epoch observations found near star
forming regions, so extinction corrections are
necessary. 
 Redder bands have smaller scatter, but also
shallower slope. 
 Calibrated using parallaxes on the II-R diagram
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 The Baade-Wesselink Method

Luminosity from the Stephan-Boltzmann formula
Consider a pulsating star at a minimum, with 
a measured temperature T1 and observed flux f1 

with radius R1 , then:

At a maximum, with a measured temperature T2 and observed flux f2 with radius R2

 Galaxy Scaling Relations

Once a set of distances to galaxies of some type is obtained, one finds correlations between distance-dependent
quantities that is, luminosity, radius and distance-independent ones, for example, rocational speeds for discs, or velocity
dispersions from ellipticals and bulges, surface brightness, etc. 
These are called distance indicator relations. Examples: 
 Tully-Fisher relation for spirals (luminosity versus rotation speed).
 Fundamental Plane relationships from ellipticals radius versus a combination of velocity dispersion and surface
brightness.
 These relations must be calibrated locally using other distance indicators, Cepheids or surface brightness
fluctuations; then they can be extended into the general Hubble flow regime.
 Their origins-and thus there universality -are not yet well understood. There may be some systematic variations.

 The basic idea:

Need a correlation between a distance-independent quantity "X", for 
example, temperature or color for stars in the H-R diagram, or the 
period for the Cepheids, and a distance-dependent one. 
Why for example, stellar absolute magnitude, M.

Two sets of objects at different distances will have a 
systemic shift in the apparent versions of why that is, 
stellar apparent magnitude, am from which we can deduce the relative distance.

This works for stars, main sequence fittings,.-Luminosity relations, 
we can we find such relationships for galaxies?

Note: T1, T2, f1, f2, are directly observable! Just need the radius. So, from spectroscopic observations we can get the

photospheric velocity v(t), from this we can determine the change in the radius are

 3 equations, 3 unknowns, solve for R1, R2, and D
 Difficulties: the effects of the stellar atmospheres
(not a perfect black body), and deriving the true radial velocity from what we observed.
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 The Tulley-Fisher Relationship - Distance vs Rotational Speed
A new method of determining distances to galaxies, 

Tulley, Fisher, Astronomy and Astrophysics, Vol. 54, p. 661 - 673, 1977

 Tully, R. B. ; Fisher, J. R.
T-F is a correlation that holds for galaxies with disks (spiral galaxies) stabilized by rotation, 
between the intrinsic luminosity L of the galaxy in optical or near-infrared bands 
and the rate of rotation W.

   A well-defined  L uminosity versus Rotational Speed often measured as H1 21 cm line with relation for spirals: 

                                                                 L ≈ vrot
γ,    γ ≈ 4  varies with wavelength.

                                                    Or:       M = b log(W) + c, where:
- M is the absolute magnitude
- W is the Doppler broadened line with, typically measured using the HI 21 cm line, corrected for inclination,
                                                                 Wtrue  =  Wobs/sin(i)

- Both the slope b in the zero-point c can be measured from the set of nearby spiral galaxies with well-known distances.
- The slope b can also be measured from any set of galaxies with roughly the same distance-for example, galaxies in
      the cluster-even if that distance is not known.
  Scatter is approximately 10 to 20% at best, which limits the accuracy.
  Problems include dust extinction, so working in the redder bands is better. 

 Data Source
The I-Band Tully-Fisher Relation For Sc Galaxies: 21 Centimeter H I Line Data

Martha P. Haynes And Riccardo Giova

 Fundamental Plane Relationships
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 The Tully-Fisher Relation and Its Historical Importance

The Tully-Fisher empirical correlation between the  luminosity and rotational velocity of spiral galaxies serves as a
distance indicator to measure distances independent of redshift. The Tully-Fisher relation has played an important role
in Hubble constant measurements since its inception. In 1977 Brent Tully and Richard Fisher published their paper, They
used only inclined spiral galaxies and proposed the usage of the linear relation between H I (21-cm neutral hydrogen (H I)
emission line) profile and absolute magnitude as a distance indicator. The publication of the Tully-Fisher relation and the
proposal to use it as a distance indicator was significant in many different ways. Firstly, it provided a robust new tool for
measuring distance at redshifts that other methods such as Cepheid variable stars cannot. Secondly, Tully and Fisher

measured the Hubble constant H0 to be 80 km s−1Mpc−1 from the Virgo cluster and Ursa Major. This value was the first

to deviate from the two mainstream values. It was also used to probe the distribution and properties of dark matter in
galaxies.

 I-band Tully-Fisher 
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 Stellar Mass, Luminosity, and Lifespan
The H-R diagram is a plot of the luminosity up and down, versus temperature left and
right with increasing temperature going to right to the left, and cooler stars on the right,
hotter stars on the left, dimmer stars at the bottom and, and brighter stars (more
luminous) at the top. Importnat:  The main sequence is composes up to 80% of all the
stars.  Giants, supergiants, and white dwarfs are a minority.

 Data Source: Accurate masses and radii of normal stars: Modern results and applications ,  G. Torres

"We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri)
that satisfy our criterion that the mass and radius of both stars be known to an accuracy of ± 3% or better." 

Binary Star
 Data Table:

  P(d)    Mass    ±       Radius    ±        Teff     ±       log g      ±        log L     ±        MV       ±
⊙ ⊙ ⊙ ⊙ ⊙ ⊙Vmax    (M )  (M )   (R  )   (R  )    (K)    (K)    (cgs)    (cgs)     (L )   (L )    (mag)   (mag)          

L⊙ 3.846 10
26

W:=Vmax is the Apparent Visual Magnitude

Read in Data from File: ObsParam READPRN "Observed Parameters - Final.txt"( ):=

Mass ObsParam
1 

:= Radius ObsParam
3 

:= Teff ObsParam
5 

:= logL ObsParam
9 

:= Mv ObsParam
11 

:=

Dependence of stellar radius on mass for Main-Sequence stars. Actual measurements show that the
radius increases nearly in proportion to the mass over much of the range (as indicated by the straight
line drawn through the data points).  Most  stars  are  members  of  binary systems—where  two
stars  orbit  one  another,  bound  together by gravity.  Here  we  describe—in  an  idealized  case
where  the relevant  orbital  parameters  are  known—how  we  can  use  the observed  orbital  data,
together  with  our  knowledge  of  basic physics, to determine the masses of the component stars

 Plot Stellar Data for Binary Stars from Above Torres Paper
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 Binary Star Mass Relationship: 
Given Mass M, Period P, and
semimajor axis A, then Kepler's Law
can be used to deduce relationships
about binary star masses:

a
3

p
2M1 M2+ ≈

 Example Sirius Binaries A & B
orbital period = 50 years·
seimi-major axis = 20 AU·
Ma + Mb = 3.2 M⊙·
further study reveals: ·

      Ma = 2.1 M⊙  and  Mb = 1.1 M⊙

   Sun  M⊙

 For Main Sequence Stars, 
the Stellar plot shows that relative to the

Sun, with a mass of 1 M⊙ and a size of 1

R⊙, the mass and radius of Main Sequence

Stars is only 0.1X to 10X relative to the sun.
   

 But for Luminosity:
 Stellar Masses of Main Sequence  

The following  Luminosity vs. Mass plot shows a huge variation
of 7 orders of magnitude of Luminiosity versus about 1.5 orders 
of magnitude of change for the Mass. This also suggests there must 
be a large variation with temperature verus mass.  Mass is the
Main Determinate of where a star will lie on the Main Sequence.   

L 4π R
2 σ T

4=

L

L⊙
≈ M

M⊙









4
Lsun Ms( ) log Ms

3.8



:=
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 Plot  Binary Stellar L vs Mass  Data from Above Torres Paper  The Mass-Luminosity Relation from End to End

0.1 1 10 100
4-

2-

0

2

4

Log of Luminosity as Function of Mass

Mass (Units of Solar Masses, M⊙)

L
um

in
os

ity

logL

LineL 1 

Lsun mass( )

Mass LineL 0 
, mass, 

The Components of Close Binary Stars
ASP Conference Series, Vol. 318, 2004, Todd Henry
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Note:  Plot is flipped upside-down.  
Max magnitude: M = -2.5 log(F(d))

L  = 4 π R2 σ Teff
4
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 Plot  Binary Stellar Magnitude vs. Mass  from Above Torres Paper

M          K   G  F  A      B          D

 Vertical Axis is -M
M = -2.5 log(F(d))
Mvv = ­ M

Note:  Plot is flipped upside-down.  
Max magnitude:   M = -2.5 log(F(d))

 Stellar Lifetimes

Luminosity increases as Mass3 for massive main-sequence stars and Mass4 for more common main-sequence stars
Total fuel to burn in star is the mass.  Therefore:

A 5 solar mass, M⊙, star has only five times more hydrogen fuel than the Sun,

but (the star's luminosity)/(the Sun's luminosity) = (5/1)4 = 625!

Its lifetime = 1/(5/1)(4-1) × 1010 years =  (1/125) × 1010 years  = 8.0 × 107 years.
More massive stars burn up fastest and have shortest lives since the 
luminosity increases as the cube of the mass for the most massive stars.
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 The Luminosity Density
 Ay21_Lecture 7: The Contents of the Universe 

https://sites.astro.caltech.edu/~george/ay21/Ay21_Lec07.pdf

 The Contents of the Universe Evolve

The relative abundances of different components change in time, due to their different EOS behavior: 

Integrate galaxy luminosity function (obtained from large redshift surveys) 
to obtain the mean luminosity density at z ≈ 0

 The Local Mass Density of the Luminous Matter in Galaxies:  Ω0,lum

Ω0,lum  Luminous Baryon Density ≈  (0.0051  0.0015) h70
-1 

 All of the visible matter amounts to only half a percent 
of the total mass/energy content of the universe!

 
(Interestingly, this may be about the same as the contribution 

from the massive cosmological neutrinos…)
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Accordingly,  ϕ(L) dL is  defined as the number density of galaxies with a luminosity between L and L + dL . It
should be noted here explicitly that both definitions of the luminosity function are denoted by the same symbol, although
they represent different mathematical functions, i.e., they describe different functional relations. It is therefore important
(and in most cases not difficult) to deduce from the context which of these two functions is being referred to. 
 Problems in determining the luminosity function of Galaxies
At first sight, the task of determining the luminosity function of galaxies does not seem very difficult. The history of this
topic shows, however, that we encounter a number of problems in practice. As a first step, the determination of galaxy
luminosities is required, for which, besides measuring the flux, distance estimates are also necessary. For very distant
galaxies redshift is a sufficiently reliable measure of distance, whereas for nearby galaxies the methods discussed earlier
have to be applied. Another problem occurs for nearby galaxies, namely the large-scale structure of the galaxy
distribution. To obtain a representative sample of galaxies, a sufficiently large volume has to be surveyed because the

galaxy distribution is heavily structured on scales of  100h-1 Mpc and more. On the other hand, galaxies of particularly
low luminosity can only be observed locally, so the determination of ϕ(L) for small L always needs to refer to local
galaxies. Finally, one has to deal with the so-called Malmquist bias; in a flux- limited sample luminous galaxies will
always be overrep- resented because they are visible at larger distances (and therefore are selected from a larger
volume). A correction for this effect is always necessary, and was applied to the Figure below.

 The Schechter Luminosity Function 
An Analytic Expression For The Luminosity Function For Galaxies, Paul Schechter
The global galaxy distribution can be roughly approximated 
                                   by the Schechter luminosity function 

h 0.74:=
ϕs 1.6 10
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 Elliptical cD galaxies Elliptical cD Type Galaxies
These are extremely luminous (up to MB -25 ) and large
(up to R < 1 Mpc) galaxies that are only found near the
centers of dense clusters of galaxies. Their surface
brightness is very high close to the center, they have
an extended diffuse envelope, and they have a very
high M/L ratio. It is not clear whether the extended
envelope actually ‘belongs’ to the galaxy or is part of
the galaxy cluster in which the cD is embedded, since
such clusters are now known to have a population of
stars located outside of the cluster galaxies.

where L*  is a characteristic luminosity above which the distribution decreases exponentially, α is the slope of the
luminosity function for small L, and ϕ*s specifies the normalization of the distribution. A schematic plot of this function,

as well as a fit to early data, is shown in the Figure below. Expressed in magnitudes, this function appears much more
complicated. Considering that an interval dL in luminosity corresponds to an interval dM in absolute magnitude, with
dL/L =  ­0.4 ln 10  M , and using ϕ(L) dL =  ϕ(M ) dM , i.e., the number of sources in these intervals are of course
the same, we obtain

 Luminosity Function of Galaxies -The Schechter Luminosity Function
Definition of the luminosity function. The luminosity function specifies the way in which the members of a class of objects
are distributed with respect to their luminosity. More precisely, the luminosity function is the number density of objects
(here galaxies) of a specific luminosity. ϕ(M) dM is defined as the number density of galaxies with absolute magnitude in
the interval |M, M + dM|.   The total density of galaxies is then
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 X. Measurement of Cosmic Distances - Trigometric Parallax

The most important fundamental distance measurements come from trigonometric parallax. As the Earth orbits the
Sun, the position of nearby stars will appear to shift slightly against the more distant background.  When a star is
observed from two points separated by a distance b, the star’s apparent position will shift by an angle θ. If the
baseline of observation is perpendicular to the line of sight to the star, the parallax distance will be

lightyear 9.46 10
12

km:= pc 3.261lightyear:= arcsec
°

3600
:=

An astronomical unit (AU, or au), a unit of length effectively equal to the average, or mean, distance 
between the Earth and the sun. 

b 2AU:=  Earth’s orbit (b = 2 AU) as a baseline, b angle θ

dπ θ b, ( ) 3.261lightyear
b

1AU










θ °

1arcsec






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

1-
:=

Measuring the distances to stars (galaxies are far too distant to be located by parallax) using the Earth’s orbit     (b =
2 AU) as a baseline is a standard technique. Since the size of the Earth’s orbit is known with great accuracy from
radar measurements, the accuracy with which the parallax distance can be determined is limited by the accuracy with
which θ can be measured. The Hipparcos satellite, launched by the European Space Agency in 1989, found the

∼parallax distance for  105 ∼ stars, with an accuracy of  1 milliarcsecond.

Two decades after the end of the Hipparchos mission, another breakthrough arrived. In 2013, ESA launched a
telescope called Gaia that charts the positions, parallaxes, and proper motions of more than one billion stars. That
number represents only about 1% of the actual number of stars in the galaxy, but that's enough for astronomers to
extrapolate the observations to understand how the Milky Way behaves as a whole. Using Gaia data, they could, for
the first time, create a dynamic movie of the galaxy's life over billions of years, uncovering past events but also
projecting what will happen in the future.
"Hipparcos had a detector with only one pixel and could only observe one star at a time," said de Bruijne, who is
ESA's deputy project scientist for the Gaia mission. "Gaia, on the other hand, has nearly a billion pixels in its
detectors and can observe thousands of stars at the same time."
Gaia’s mirrors are 20 times larger and therefore it collects light much more efficiently than its predecessor, seeing
much deeper into the galaxy.

In terms of absolute maximum distances,  Very Long Baseline Interferometry (VLBI) can push these limits even
further, potentially up to around 30,000 light years with current technologies if the parallax measurement precision
can be maintained at about (10 thousands of an arc second). Uses radio wavelengths 90 cm to 3 mm.
See Section XIX B. Our Galactic Home - The Milky Way

The  Event Horizon Telescope (EHT) is a large telescope array consisting of a global network of radio telescopes.
The EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Earth, which
form a combined array with an angular resolution sufficient to observe objects the size of a supermassive black hole's
event horizon. The project's observational targets include the two black holes with the largest angular diameter as
observed from Earth: the black hole at the center of the supergiant elliptical galaxy Messier 87 (M87*, pronounced
"M87-Star").

 Parallax Distance: dπ 10 10
3-

 arcsec b, ( ) 37368 lightyear=

An Improved Distance to NGC 4258, The Astrophysical Journal Letters, 2019 December 1 
This paper claims a distance estimate of 7.6 Mpc or 24 Million Lightyears for NGC 4258.

 Parallax Distance,  dπ
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  Measurement of Cosmic Distances - The Standard Candle
 MEASURING COSMOLOGICAL PARAMETERS

 The current proper distance to a galaxy, dp(t 0 ), is not a measurable property
Since cosmology is ultimately based on observations, if we want to find the distance to a galaxy, we need some way of
computing a distance from that galaxy's observed properties. Let’s focus on the properties that we can measure
for objects at cosmological distances. We can measure the flux of light, f, from the object, in units of watts per square
meter. The complete flux, integrated over all wavelengths of light, is called the bolometric flux. (A bolometer is an
extremely sensitive thermometer capable of detecting electromagnetic radiation over a wide range of wavelengths.)
  

Cosmologists would like to know the scale factor a(t) for the universe. For a model universe whose contents are
known with precision, the scale factor can be computed from the Friedmann equation. Finding a(t) for the real
universe, however, is much more difficult. The scale factor is not directly observable; it can only be deduced
indirectly from the imperfect and incomplete observations that we make of the universe around us.
 

 The Standard Candle
   

One way of using measured properties to assign a distance is the standard candle method. A standard candle is an
object whose luminosity L is known. For instance, if some class of astronomical object had luminosities which were
the same throughout all of space-time, they would act as excellent standard candles – if their unique luminosity L were
known.  For instance, if some class of astronomical object had luminosities which were the same throughout all of
space-time, they would act as excellent standard candles – if their unique luminosity L were known. Nowadays, the
bolometric apparent magnitude of a light source is defined in terms of the source’s bolometric flux, m,  

Reference Flux: fx 2.53 10
8-


W

m
2

:=

 Reference Luminosity: L⊙ 3.846 10
26

W:= Lx 78.7 L⊙:=

Since that is the luminosity of an object which produces a flux fx = 2.53 × 10 −8 watt m −2 when viewed

from a distance of 10 parsecs. The bolometric absolute magnitude of the Sun is thus M = 4.74. 

Given the definitions of apparent and absolute magnitude, the relation between an object’s apparent magnitude, m,
and its absolute magnitude, M, can be written in the form

 The  Distance Modulus is Defined as   m − M,
and is related to the luminosity distance by the relation

M m 5 log
dl

10pc









-=
m M- 5 log

dl

10pc









25+=

 Using standard candles to determine the Hubble constant is the method used by Hubble himself. 
The recipe for finding the Hubble constant is a simple one:
 • Identify a population of standard candles with luminosity L.
 • Measure the redshift z and flux f  for each standard candle.

 • Compute dL = (L/4πf)1/2 for each standard candle.
 • Plot cz versus dL .

 • Measure the slope of the cz versus dL relation when z << 1; the slope gives H0 .

where the reference flux fx is set at the value fx = 2.53 × 10 −8 watt m −2. Thanks to the negative sign in the
definition, a small value of m corresponds to a large flux f. For instance, the flux of sunlight at the Earth’s location
is f = 1367 watts m −2 ; the Sun thus has a bolometric apparent magnitude of m = − 26.8. 
The bolometric absolute magnitude of a light source is defined as the apparent magnitude that it would have if it
were at a luminosity distance of dL = 10 pc. Thus, a light source with luminosity L has a bolometric absolute
magnitude, M.  Luminosity of the sun: LM⊙
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 Initial Mass Function, IMF
 The properties and evolution of a star are closely related to its mass .
 In astronomy, the initial mass function (IMF) is an empirical function that describes the initial distribution of
masses for a population of stars during star formation. IMF not only describes the formation and evolution of
individual stars, it also serves as an important link that describes the formation and evolution of galaxies. The mass
of a star can only be directly determined by applying Kepler's third law into binary stars system. However, the
number of binary systems that can be observed is low, thus not enough samples to estimate the initial mass
function. Therefore, stellar luminosity function is used to derive a mass function (present-day mass function,
PDMF) by applying mass–luminosity relation. the luminosity function requires accurate determination of distances, and
the most straightforward way is by measuring stellar parallax within 20 parsecs from the earth. The IMF is often stated
in terms of a series of power laws, where  ξ(m)Δm, the number of stars with masses in the range m to m + dm

within a specified volume of space, is proportional to m-α.

 Note: The vertical axis for the Initial Mass Function ξ(m) is SCALED so that for m greater than M⊙, it is (m/M⊙)-2.35 

M⊙ 1.989 10
30

 kg:= ξ0 1:= ξ m Δm, ( ) ξ0
m
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 Kroupa (2001)

ξK m( ) if m 0.08< m
0.3- 15, if m 0.08( ) m 0.5( ) 1.3 m

1.3-, m
2.35-,  ,  :=

 Intro to Cosmology , 
 2nd. Ed.,  Ryden 2016
 Equation 7.3 ξr M( ) 2.5

1
M

 exp
log M( ) log 0.2( )-( )2-
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 Mass ranges corresponding to the standard stellar spectral types O through M are indicated.
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 Massive   O stars  are 
extremely luminous, 
they are also short-
lived. An O star with 
a mass M = 60 M⊙  

will run out of fuel 
for fusion in a time 
       t ≈ 3 Myr; 
it will then explode as 
a type II supernova. 

 Note:
Ωstars ≈ 0.3%

M            K  G  F  A               B                   O

  Edwin E. Salpeter (1955) was the first astrophysicist who attempted to quantify IMF by applying power law into his
equations.    ξ0   is a constant relating to the local stellar density

 Chabrier (2003)  gave the following expression for the density of individual stars in the Galactic disk, in units of parsec−3

The vertical axis is not ε(m), but is a scaled version (m/M⊙)-2.35
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 XI.  Cosmic Distance Scale  - Standard Candle 1:    Cepheid Variables

 The Standard Candle
To move outward in distance one starts One, with trigonometric parallaxes, then observes the same object with the
other types of less precise parallaxes to calibrate and scale them. Once this is done one has the distance ladder
reaching about 10,000 pc – halfway across the Milky Way. At this point one must put aside the parallax method
and use other methods. With few exceptions, distances based on direct measurements are available only out to about
a thousand pc, which is a modest portion of our own Galaxy. For distances beyond that, measurements are going to
depend upon physical assumptions, that is, knowledge of the object in question. One must recognize the object
and assume the class of objects is homogeneous enough that its members can be used for a meaningful estimation
of distance – a standard candle as it were. 

Almost all of the remaining rungs on the ladder are standard candles of one kind or another. A standard candle is an
object that belongs to some class that has a known brightness (i.e., all members of the class have the same
brightness). By comparing the known luminosity of the latter to its observed brightness, the distance to the
object can be computed using the inverse square law. 
Two problems exist for any class of standard candle. The principal one is calibration, determining exactly what the
absolute magnitude of the candle is. This includes defining the class well enough that members can be recognized, and
finding enough members with well-known distances that their true absolute magnitude can be determined with enough
accuracy. The second lies in recognizing members of the class, and not mistakenly using the standard candle
calibration upon an object which does not belong to the class. At extreme distances, which are where one most
wishes to use a distance indicator, this recognition problem can be quite serious. 

 Standard Candle #1:  Cepheid Variables 
 Cepheids were first noticed in 1784 in the constellation Cepheus in the northern sky, so these stars became known as
“Cepheid variables.”  Cepheids are stars that periodically dim and brighten. In 1908 Henrietta Leavitt noticed a
relationship between the brightness (or “luminosity”) of a Cepheid variable star and its period for its pulsations in
luminosity. They have a unique waveform and we can measure their period independent of how far away they are. 
 In the 1950s, astronomer Walter Baade discovered that the  nearby Cepheid variables used to calibrate the
standard candle were of a  different type than the more distant ones used to measure distances to nearby
galaxies. The  nearby Cepheid variables were  young, massive stars with much higher metal content than the distant
old, faint ones. As a result, the old stars were actually much brighter than believed, and this had the ultimate
effect of doubling the distances to the globular clusters, the nearby galaxies, and the diameter of the Milky Way. 
Cepheids are luminous variable stars that  radially pulsate. The strong direct relationship between a Cepheid’s
luminosity and its pulsation period makes them an important standard candle for Galactic and extragalactic 
sources. Type I Cepheids undergo pulsations with very regular periods on the order of days to months. 
A relationship between the period and luminosity for Type I Cepheids was discovered in 1908 by Henrietta
Swan Leavitt in her investigation of thousands of variable stars in the Magellanic Clouds. To use them as standard
candles, one observes the pulsation period to get the luminosity (absolute magnitude). By then measuring the
apparent brightness (value observed at Earth) one has everything needed to use the distance modulus m – M. The
work was so important that Leavitt was considered for the Nobel Prize, but she died before her name could be
submitted. 

In addition, using data from the HIPPARCOS astrometry satellite, astronomers calculated the distances to many
Galactic Cepheids using the trigonometric parallax technique. The resultant period-luminosity relationship for Type 1
Cepheids was: MV  = 2.81 log(P) - (1.43 ±0.1)

                                                                            where MV is the absolute magnitude and P is the period in days.
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 XII. Modeling the Dynamics of a Cepheid Variable
There are two classifications of variable stars, RR Lyrae and Oepheid Variables. BB Lyrae have approximately a
Solar mass and are yellow-white giants with luminosities on the order of 100 times that of the Sun. Cepheid Variables
are yellow supergiants with several Solar masses and luminosities on the order of 20,000 times that of the Sun. These
stars pulsate as the result of a special relationship between pressure and gravity. One idea is that as radiation

emanates from the star, some of the He+ ionized into He2+ leading the surface of the star become more opaque. 
As the surface darkens, less energy is able to escape therefore heating the gas within the star. As the gas heats it pushes
outward expanding the staris radius. As the star grows in volume, the gas cools allowing the pressure inside to drop

(He+2 converts back to He+) and gravity to once again dominate by pulling everything inward. The cycle then is able to
begin again.

 Find The Period of a Cepheid Variable Star

 From Newton's Second Law:

In Equilibrium R is constant
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 For the adiabatic expansion of a gas: P0 V0
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 The Period, T,  is TCepheid
2π
ω

= Find the Period for this simple harmonic oscillation:
Mass, M,  and Radius, R, of Sun  For a Cepheid 10X Mass & 30X Radius of Sun
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=

TCepheid 6.024 day=

 This Equation has the form of an Wave/Oscillation
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 Modeling the Dynamics  of a Cepheid :  Solve for δ Radii, Velocity, and Pressure 
 Newton's Second Law  Use the Greek letter  thau   τ  to represent the symbol for time (t)
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:= Solve Differential Equation for Cepheid Oscillations
 Mathcad ODE Solver Program
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VXPhysics 71



 Calibrating Cepheid period-luminosity relation from the infrared surface brightness
Astronomy &Astrophysics 534, A95 (2011)      https://www.aanda.org/articles/aa/pdf/2011/10/aa17154-11.pdf

The Cepheid period-luminosity (P-L) Relation is fundamental to the calibration of the extra-galactic distance
scale and thus to the determination of the Hubble constant.

 DATA:  Distances & absolute magnitudes Large Magellanic Clouds (LMC) Cepheids calculated using precepts

ID#  log(P)   d       σ(d)    ( m−M)0   σ(m−M)    MV    MI       MJ     MH    MK   WVI    WJK     E(B−V)    Δφ   Δ(m−M)

                  (kpc)   (kpc)    ( mag)        (mag)     (mag)  (mag)  (mag) (mag) (mag) (mag) (mag)      (mag)                (mag)

 Read In Cepheid Data from File: CPL READPRN "Distances and absolute magnitudes for the LMC Cepheids.txt"(:=

P CPL
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-:= MV CPL
6 

-:= ab line P MK, ( ):= MP p( ) ab
1

p ab
0

+:=

AB line P MV, ( ):= Mp p( ) AB
1

p AB
0

+:= ab
0

2.401= ab
1

3.315= AB
0

1.225= AB
1

2.774=

 Read Small Magellanic Clouds: CPLs READPRN "Distances and absolute magnitudes for the SMC Cepheids.txt"( ):=
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 Calibrating Cepheid period-luminosity relati on,      Conclusion - J. Storm, W. Gieren, P. Fouqué: 
The emerging conclusion based on our data and analysis is that for accurate distance measurements to galaxies the
 K-band Cepheid Period-Luminosity is the best suited tool: it is metallicity-independent both regarding the slope and
the zero point, it is very insensitive to reddening, and it has a smaller intrinsic dispersion than any optical PL relation.

 Apparent Brightness
Describe how bright a star seems as seen from Earth by its apparent brightness. This is often called the intensity of
the starlight. Sometimes it is called the flux of light.The apparent brightness is how much energy is coming from the
star per square meter per second, as measured on Earth. The units are watts per square meter (W/m2).

the distance d to the star,·
the apparent brightness b of the star, and·
the luminosity L of the star.·
All of the energy produced by the star per second must cross a sphere of radius d.·
The study of geometry tells us that area of this sphere is 4 π d2·

b
L

4π d
2

=

L 4π d
2( )b=
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 Cosmic Distance Scale Summary
• Local measurements of the H0 are now good to ≈ 5%, and may be  improved in the future

• Concept of distance ladder; many uncertainties & calibration problems, model dependence, etc
• Cepheids as the key local distance indicator
• SNe as a bridge to the far-field measurements
• Far-field measurements (SZ effect, lensing, CMB)
• Ages of oldest stars (globular clusters), white dwarfs, heavy elements consistent with CMB age
• CMB provides more precise determinations of the H0 and other cosmological parameters. 

• However, persistent discrepancy between the CMB based & Cepheid based measurements.  
    

 T his may be a sign of a new physics.

 XIII. A. 1929 Hubble's Original Observations Galaxy Recession & Hubble Constant Calculation

The relationship between the expansion of the universe & the distance, H0, was discovered by Edwin Hubble in 1929

from astronomical observations of Cepheid Variables, and is known as Hubble's Law. Hubble estimated velocity from
redshift, z, where He assumed that z = v/c. The distance, d, is measured from parallax or a luminosity of a standard
candle.Then  v = H0 * r. Hubble thought that the redshift, z, was from the Doppler effect, v/c.  He estimated the value of

H0 as 500 km/s per Mpc. Which is  grossly in error because he underestimated the distance to the galaxies. The

large number from the  redshift velocity divided by a too small distance.  Note: H = r/v.  Therefore H is the reciprocal of
time from expansion.

HHubbleData READPRN "Hubble Dataset.txt"( ):=

              Distance Data (Mpc)                   Recessional Velocity (km/s) Data from Redshift, r 

drecH HHubbleData
0 

:= vrecH HHubbleData
1 

:=

ab4 line drecH vrecH, ( ):=

HHubble ab4
1

:= HHubble 500
km

s
Mpc

1-=

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
200-
100-

0
100
200
300
400
500
600
700
800
900

1000
Hubble's Original 1929 Recessional Velocity vs Distance: Calculation of Hubble Constant

Hubble's Original Distance to Galaxy (Mpc) Measurements from Cepheid Variables

R
ec

es
si

on
al

 V
el

oc
ity

 (
km

/s
)

vrecH

HfitH drecH( )

drecH

 The Physical Meaning of the Hubble Constant in terms of  Expansion Rate per Distance: 
The Hubble constant tells us how quickly any two distant points in the universe are moving apart per unit distance. For example, if H0

equals 2.3 *10-18 s-1 , it means that for every meter between two points, the separation increases by 2.3 *10-18  meters per second.

HHubble:   Based on Early

Measurements of Distances  by
Hubble. The original value of H

had Considerable Error.
Galaxies were further away

than Hubble's Estimates.
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 B. Current Value of Hubble's Law, H0. Data:  NASA Galaxy Recession from 3645 Galaxies

Calculated Htwk within

less than a 2% Error. 

 Standard Candle #2: Type Ia supernova For example, all observations seem to indicate that Type Ia supernovae
that are of known distance have the same brightness (corrected by the shape of the light curve); however, the possibility
that the distant Type Ia supernovae have different properties than nearby Type Ia supernovae exists. The use of Type Ia
supernovae is crucial in determining the correct cosmological model. If indeed the properties of the Type Ia’s are different at
large distances, i.e. if the extrapolation of their calibration to arbitrary distances is not valid, ignoring this variation can
dangerously bias the reconstruction of the cosmological parameters.
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Hubble's original estimate estimate from Cepheids was in error. The current value is H0 is 73 ± 1 km/sec/Mega parsec.
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 XIV A. Standard Candle 2:   Type 1a Supernovae (SN)
q0 0.53-:=

 Introduction to Cosmology , Ryden, pg. 116 (Ryden's Distance Equation for Distance Modulus, Dmod) 
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At a  redshift  z  =  0.2,  for  instance, the luminosity distance  dL  in  the Benchmark Model (with q0 = -0.53) is 5 percent
larger than dL in an empty universe (with q0 = 0). 

For a standard candle to be seen at dL > 1000Mpc, it must be very luminous. In recent years, the standard candle of
choice among cosmologists has been type Ia supernovae. A supernova may be loosely defined as an exploding star. Early
in the history of supernova studies, when little was known about their underlying physics, supernovae were divided into two
classes, on the basis of their spectra. Type I supernovae contain no hydrogen absorption lines in their spectra; type II
supernovae contain strong hydrogen absorption lines. Gradually, it was realized that all type II supernovae are the same
species of beast; they are massive stars 
(M > 8M☉ ) whose cores collapse to form a black hole or neutron star when their nuclear fuel is exhausted. During the
rapid collapse of the core, the outer layers of the star are  thrown  off  into  space.  Type  I  supernovae  are  actually  two
separate species,  called  type  Ia  and  type  Ib.  Type  Ib  supernovae,  it  is  thought,  are massive stars whose cores collapse
after the hydrogen-rich outer layers of the star have been blown away in strong stellar winds. Thus, type Ib and type II
supernovae  are  driven  by  very  similar  mechanisms  –  their  differences  are superficial,  in  the  most  literal  sense.
Type  Ia  supernovae,  however,  are something completely different. They begin as white dwarfs; that is, stellar
remnants that are supported against gravity by the quantum mechanical effect known as electron degeneracy pressure. The
maximum mass at which a white dwarf can be supported against  its self-gravity is called the Chandrasekhar mass; the
value of the Chandrasekhar mass is M ≈ 1.4 M⊙ . A white dwarf can go over this limit by merging with another white

dwarf, or by accreting gas from  a  stellar  companion.  If  the  Chandrasekhar  limit  is  approached  or exceeded, the white
dwarf starts to collapse until its increased density triggers a runaway nuclear fusion reaction. The entire white dwarf
becomes a fusion bomb,  blowing  itself  to  smithereens;  unlike  type  II  supernovae,  type  Ia supernovae do not leave a
condensed stellar remnant behind. 

Within our galaxy, type Ia supernovae occur roughly once per century, on average. Although type Ia supernovae are not
frequent occurrences locally, they are extraordinarily luminous, and hence can be seen to large distances. The luminosity

of an average type Ia supernova, at peak brightness, is L = 4 × 109 L M⊙ ; that’s 100,000 times more luminous than even
the brightest Cepheid. For  a  few  days,  a  type  Ia  supernova  in  a  moderately  bright  galaxy  can outshine all the
other stars in the galaxy combined. Since moderately bright galaxies can be seen at     z ≈  1, this means that type Ia
supernovae can also be seen at z ≈ 1. 

So  far,  type  Ia  supernovae  sound  like  ideal  standard  candles;  very luminous  and  all  produced  by  the  same
mechanism.  There’s  one complication,  however.  Observation  of  supernovae  in  galaxies  whose distances  have  been
well  determined  by  Cepheids  reveals  that  type Ia supernovae do not have identical luminosities. Instead of all having
L = 4 × 109 L⊙ , their peak luminosities lie in the fairly broad range L ≈ (3 - 5) × 109 L⊙ .  However,  it  has  also  been  noted
that  the  peak  luminosity  of  a  type  Ia supernova  is  tightly  correlated  with  the  shape  of  its  light  curve.  Type  Ia
supernovae  with  luminosities  that  shoot  up  rapidly  and  decline  rapidly  are less luminous than average at their peak;
supernovae with luminosities that rise  and  fall  in  a  more  leisurely  manner  are  more  luminous  than  average. Thus,
just as the period of a Cepheid tells you its luminosity, the rise and fall time of a type Ia supernova tells you its peak
luminosity." 

"To determine the acceleration of the universe, we need to view standard candles for which the relation between dL and

z deviates significantly from the linear relation that holds true at lower redshifts. In terms of H0 and q0, the equations for

luminosity distance dL and distance modulus Dmod(z) at small redshift (z < 1 ) is, (Ryden 2nd Ed. Eq. 6.51),
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 B. Standard Candle 2:    Hubble Space Telescope Light Curves Of Type 1a SN

 Supernova Cosmology Project
"Amanullah et al. (The Supernova Cosmology Project), Ap.J., 2010

https://supernova.lbl.gov/Union/figures/SCPUnion2_mu_vs_z.txt
q0 0.53-:=
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The solid line represents the best fitted cosmology for a flat Universe including the CMB and BAO constraints. 

 Type Ia Supernovae 
are believed to be caused by the

thermonuclear explosions of a
carbon-oxygen white dwarf in a binary

system. The process involves mass
transfer to the white dwarf from the
companion. When the white dwarf

reaches the Chandrasekhar mass, the
explosion occurs. Since the explosions
occur at the same mass, the explosions
should be nearly identical. Furthermore,

luminosity evolution should not occur
since the physics of the explosion is

the same in the past.
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Dmod(z) is Ryden's Equation (See

below), which is an approximation for
the Distance Modulus for small
redshift. The deviation from the straight
line Fit(z) tells us that the expansion of
the universe is speeding up.

 Ryden's Distance Modulus Equation ( z ): 
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 C.  Reconstructing Cosmic History:   JWST-Extended Mapping of the Hubble Flow from ∼ ∼ z 0 to z 7.5
                                                                                        with HII Galaxies  https://arxiv.org/html/2404.16261v1 

 Abstract
Over twenty years ago, Type Ia Supernovae (SNIa) observations revealed an accelerating Universe expansion,
suggesting a significant dark energy presence, often modelled as a cosmological constant, Λ. Despite its pivotal role in
cosmology, the standard  ΛCDM model remains largely underexplored in the redshift range between distant SNIa and
the Cosmic Microwave Background (CMB). This study harnesses the James Webb Space Telescope’s advanced
capabilities to extend the Hubble flow mapping across an unprecedented redshift range, from z ≈ 0  to z ≈ 7.5 . Utilising
a dataset of 231 HII galaxies and extragalactic HII regions, we employ the  L − σ relation, correlating the luminosity of
Balmer lines with their velocity dispersion, to define a competitive technique for measuring cosmic distances. This
approach maps the Universe’s expansion over more than 12 billion years, covering 95% of its age. Our
analysis, using Bayesian inference, constrains the parameter space 

(statistical) for a flat Universe. These results provide new insights into cosmic evolution and suggest uniformity in the
photo-kinematical properties of young massive ionizing clusters in giant HII regions and HII galaxies across most of the
Universe’s history.
In the pursuit of a more versatile analysis framework, we have also established an h-free likelihood function. This involves
a  rescaling of the luminosity distance (dL) through the introduction of a dimensionless luminosity distance, 

DL(z,θ), defined as:

In this formulation, dL is expressed as dL = cDL/H0 . This rescaling technique is employed to ascertain cosmological

parameters independently of the Hubble constant. Here  E(z,θ) for a flat Universe is given by:

with  y = (1 + w0 + wa) and Ωr the radiation density parameter such that we can define  Ωw = 1−Ωm− Ωr
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 Above Figure:
Hubble diagram for GEHRs and HIIGs, here z is the redshift and μ is the distance modulus. In magenta we present the
‘anchor’ sample of 36 GEHRs which have been analysed in [26], in blue we present the full sample of 181 HIIGs which
have been analysed in [18], while in red we present the 9 new HIIGs from [27] and in green the 5 new HIIGs
studied with JWST by [28]. The black line is the cosmological model that best fits the data with the red shaded area
representing the 1σ uncertainties to the model, while the grey dashed line is a flat cosmological model without dark energy.
The inset at the left shows a close-up of the Hubble diagram for z ≤ 0.15. The inset at the right presents the pulls
probability density function (pdf) of the entire sample of GEHRs and HIIGs and the red line shows the best Gaussian fit to
the pdf.

The  L − σ relation of GEHRs and HIIGs. The data points follow the same color code for the different samples as in
the previous figure. The red line shows the best linear fit to the data, including the uncertainties in both axis. At the top
of the figure we present the values of the slope and intercept of the best fit including their uncertainties. We also show
the standard deviation of the log L around the best fit and the total number of objects in the sample. The inset shows
the pulls distribution of the entire sample of GEHRs and HIIGs and the red line shows the best Gaussian fit to the
distribution.

[18] González-Morán, A. L. et al.Independent cosmological constraints from high-z H II galaxies: new results from VLT-KMOS
data.MNRAS 505, 1441–1457 (2021).
[26] Fernández Arenas, D. et al.An independent determination of the local Hubble constant.MNRAS 474, 1250–1276 (2018).

∼[27] Llerena, M. et al.Ionized gas kinematics and chemical abundances of low-mass star-forming galaxies at z  3.A&A 676, A53 (2023).
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 D. Using Gravitational Waves to Find Hubble's Constant, Hg

The gravitational wave signal emitted by the merger of two compact objects can be used as a self-calibrating
standard candle. Unlike the methods to Measure the Hubble Constant, H0, in the followings Section X, the LIGO

measurement does not use a “distance ladder”. By detecting gravitational waves from merging binary neutron stars
or black holes, LIGO can provide a measurement of the distance to the source and the rate at which it is
movingaway from us. There are now operational detectors at LIGO Hanford and LIGO Livingston in the USA,
Virgo in Italy, and KAGRA in Japan. The detectors measure the strain amplitude of a gravitational wave by using
laser inferometry to detect the minuscule changes in the length of perpendicular beams as a wave passes by. 
The purpose of the two sites in the USA is to later out local seismic vibrations. The wave amplitude is related to
the chirp mass Mc which is in turn derivable from the waveform calculated for a merger. A implied form of the

relevant equations are:                    LIGO Parameters

 For Definitions of Parameters See Sections V, XII, XXIC, and XXID.

Compare the Theoretical Magnitude-Redshift to Perlmutter 1999 SB 1A 

 Given the Luminosity Red Shift Relation (for k > 0 ): 

mbol z Ωm, ( ) 5 log 1 z+( ) 5 log χem z Ωm, ( )( )+ 24+:=

where the Luminosity Distance, DL(z) is given as the red shift integral of the Hubble parameter H(z), and the Hubble
constant H0. f is the frequency, m1 and m2 the merging masses, Φ(t) the phase, and Rh(t) the measured dimensionless
strain of the strongest harmonic (Abbott et al. 2016). The rest-frame chirp mass is red shifted by zcobs, and F is a
function of the angle between the sky position of the source and detector arms, and the inclination I between the binary
orbital plane and line of sight. 

∼The LIGO-Virgo detector network had a detection horizon of  190 Mpc for binary neutron star (BNS) events (Abbott
∼et al. 2017a),  For example, the counterpart associated with GW170817 had brightness  17 mag in the I band at 40

Mpc

When a binary neutron star (BNS) system merges, there is an accompanying burst of light from matter outside the
combined event horizon. For this reason, it is known as a “bright siren”. If the ash can be observed, the host galaxy is
identified and one can use its redshift in the above equation. 

The event GW170817 was just such a BNS merger.   Given the search region, an optical counterpart was found in
NGC 4993 at a distance, dL ∼, of  40 Mpc. Around fc = 3000 cycles of the wave resolved the chirp mass in the detector

frame as Mc = 1.197M☉ to accuracy of 1 part in 10 3, consistent with a BNS merger. The main remaining uncertainty

is then the inclination angle I. 

fc 3000Hz= Hg Hg Mz f, dL, F, Φ, ( )=

Mz 1.197M⊙=

dL 43.8Mpc= This Gives: Hg 70
km

s
Mpc

1-=

Abbott, B. P., et al. 2017a, PRL, 119,
doi:10.1103/PhysRevLett.119.161101
—. 2017b, ApJL, 848, doi:10.3847/2041-8213/aa920c
—. 2017c, ApJL, 848, doi:10.3847/2041-8213/aa91c9

MEASURING THE EXPANSION OF THE UNIVERSE
WITH GRAVITATIONAL WAVES
https://www.ligo.org/science/Publication-
GW170817Hubble/flyer.pdf 
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 E.  Real Time Measurement of Cosmic Expansion Within Our Lifetime        
          A Measurement of the Cosmic Expansion Within our Lifetime,  Fulvio Melia, arXiv:2112.12599v1                 

 Methodology:  Measurement of Spectroscopic Velocity Shifts - Redshift Drift
 The goal is to measure Incremental Changes in red shift, δz, over a "short" time interval, δt.  Because of the small
magnitude of the drift of redshift with time, measurements must be made over many decades.

 Introduction: Objects receding from us with the general Universal expansion become fainter with time, and their spectra
are redshifted according to their distance. The rate at which these quantities change is characterized by the expansion
speed and acceleration, but is scaled to the age of the Universe (t0 ≈ 13.5 Gyr), which is considerably longer than a

human lifetime. It would therefore be farfetched to even consider ‘watching the Universe expand in real time. And yet,
there is great interest at the prospect of actually measuring the evolving redshift of distant sources via a campaign lasting
several decades. For example, using the European Extremely Large Telescope for observations.

 Red Shift Drift 
Cosmology today is based on the Friedmann-Lemaıtre-Robertson-Walker (FLRW) metric (See Section IV) for a
spatially homogeneous and isotropic three-dimensional space, expanding or contracting according to a time-dependent
expansion factor, a(t):  This form of the FLRW metric is written using the coordinates of a comoving observer, for whom
t is the cosmic time (and is the same everywhere), r is the comoving radius, which remains fixed for any source lacking
so-called peculiar motion.  Every physical distance in FLRW should be product of a fixed comoving radius r and a(t). 

 Cosmic Acceleration
 The most reliable information on a(t) comes in EM waves, shifted in frequency, ν, by the combined effects of kinematic
and gravitationally induced redshift effects. The null geodesic equation describing the propagation of such waves along
the −ˆr direction, with fixed θ and φ, is obtained from the equation:    cdt  = - a(t) dr
Thus, an electromagnetic signal emitted at re , at time te , will reach the observer at time t0 given by

 See Section V.
Distances in Cosmology 

this equation tells us how t0 changes as a function of te due to the evolution of a(t) between these two times. For example,

if we consider the emission and detection of two crests of the wave, one a te and t0 , and the second at

 te + δte and  t0 + δt0 , then By definition:

 Doppler Shift

substituting  ν = c/λ  and gives  

this relation gives us the redshift corresponding to cosmic evolution over millions and billions of years. It is hardly useful
as a probe of the change occurring over a mere human lifetime. It is necessary for us to derive from this Equation 

an expression yielding the incremental changes in z expected during a much shorter time interval δt0 .

Differentiating the above equation for  1 + z   with respect to the observer’s time δt0  , we find that

Given Hubble Parameter: and 
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this finally gives:

During a monitoring campaign, the surveys will measure the spectroscopic velocity shift, Δv, defined in terms of the

redshift drift Δz over an observation time Δt.  The goals is to measure spectroscopic velocity shifts of  <  1 cm s−1 yr −1.
Then the redshift drift can then be used to determine the real time values of the standard ratios for mass, radiation and
dark energy: 

 Refer to Section V. 
Distances in Cosmology 

H_H0ν z Ωm, ( ) Ωm 1 z+( )3 Ωr0 1 z+( )4+ ΩΛ0+:=

For example, in the simplified approach of assuming a spatially flat Universe (i.e., k = 0) and dark energy in the form
of a cosmological constant Λ (with wde = −1), 

the monitoring of Δv should provide a direct measurement of Ωm , and therefore of Ωde ≡ ΩΛ = 1 − Ωm . 
   

To illustrate the potential for carrying out this groundbreaking work, we show in the Figure below the variation of

Δv/Δt (in units of cm s−1 yr−1 ) with redshift and the matter density Ωm. 

Plot Below Shown with Ωm values of 

0.1, 0.2, 0.315, and 0.5dvdt z Ωm, ( ) c
1 z+( ) H_H0ν z Ωm, ( )-  H0

1 z+( ) cm s
1- yr

1-
:=

 Example of How Measurement of Universe's Real Time Cosmic Expansion by Spectroscope drift can be used
 to Fit Cosmological Model Parameter Values to these Measurements of Cosmic Drift ( Δv/Δt  cm/sec /year  )
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          Ωm = 0.315                                           

Spectroscopic velocity shift Δv/Δt associated with the redshift drift predicted by the Planck-ΛCDM model   

(k = 0, Ωm = 0.315, H0  =  69.8 km s−1 Mpc−1 ; thick black line), and several variations with alternative values

of Ωm (indicated in the plot). 

   In every case, dark energy is assumed to be a cosmological constant, Λ, with wde = −1 and ΩΛ = 1 − Ωm.

Notice, e.g., that the redshift drift with time is positive at low redshifts, and then turns negative or the more distant sources.
This  unambiguous prediction by the standard model is simply based on the temporal evolution of the matter (ρm) and

dark-energy (ρde) densities, which sees the Universe dominated by ρm at z > 0.7, giving way to the latter towards the

present. In ΛCDM, dark energy functions as an agent of acceleration, whereas a matter-dominated cosmos is always
decelerating. Planck-ΛCDM has been quite successful in accounting for a broad range of cosmological observations, but
careful scrutiny reveals several major fundamental problems with its theoretical foundation.

There are few instances in science when the anticipated impact of an experiment carries this much weight.
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 XV. Stellar Flares Introduction:  

 Stellar Flares:  Power bursts of energy from stars resulting from magnetic fields. Almost all stars in the Universe
with convection zones produce stellar flares - bursts of energy emitted from the star that are thought to be caused
by magnetic reconnection.

 Light Curve File: Time series data for a target pixel file of a specific star that shows the change in brightness. 
Light curves are saved as text files, with 10 columns and two header lines. 

A Light Curve flare characteristic is a rapid rise followed  by a slow decline process.
  

Our Sun is a G-type star, or “yellow dwarf.” It has a rotational period approximately 25 days at its equator,
but varies depending on latitude, with the polar regions taking longer to rotate, reaching up to 35 days; this
phenomenon is called differential rotation.  G defined by strong absorption lines from ionized calcium; more
generally, absorption lines from metals are stronger in G-type stars than in hotter stars (such as F-type stars) and
weaker than in cooler stars (such as K-type stars). G-type stars have typical (effective) temperatures between
around 5200 Kelvin (K) and 6000 K. Our sun is an old star ≈ 10 GYr.

Red  dwarfs (or M-dwarf) are  by  far  the  most  common type  of  fusing  star  in  the  Milky Way.   A red
dwarf is the smallest kind of star on the main sequence with 
 2000 to   3,900 K temperature and 0.08 to 0.6 M☉  mass. M-dwarfs make up 75% of nearby stars. 
  

 Flare Properties of Small Stars
The amplitude of stellar flares from small stars (such as red dwarfs or other low-mass stars) tends to decrease with
increasing mass and temperature for several reasons. This phenomenon is related to the way magnetic activity,
which drives stellar flares, is influenced by the star's mass and internal properties. Explosion of stellar flares can
release enormous energy, mainly caused by the magnetic reconnection process in the coronal region.

 1. Magnetic Activity and Stellar Mass:
   

 Low-Mass Stars (Red Dwarfs): 
Low-mass stars are typically more active magnetically. These stars have stronger magnetic fields relative to their
size, which means they are more prone to flare activity. The magnetic dynamo in low-mass stars (the process that
generates their magnetic field) operates more efficiently due to their relatively slower rotation rates, higher levels of
magnetic flux, and a more vigorous convective envelope.

 High-Mass Stars: 
Higher-mass stars (such as G-type or A-type stars) have weaker magnetic fields and less intense convection,
which means they generate fewer flares. Their magnetic dynamos tend to be less efficient, and because they rotate
faster, the magnetic activity is often more evenly spread out over the star’s surface, preventing highly energetic
flares. Essentially, these stars are less magnetically active overall.
Effect on Flare Amplitude: Low-mass stars (e.g., red dwarfs) experience frequent, intense flares because of their
strong magnetic fields,  higher-mass stars experience fewer, less intense flares due to weaker magnetic activity.
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 2. Temperature and Stellar Activity:
Cooler Stars: 
Cooler, lower-mass stars (like red dwarfs) have deeper convection zones. These convection zones, combined
with the star's relatively slow rotation, create large, localized magnetic fields that can produce powerful flares. The
cool Temperature allow for more pronounced magnetic field interactions at the surface, leading to stronger flares.

Hotter Stars: 
As a star's mass increases, it tends to be hotter, and this increases its luminosity and temperature.
For these hotter stars (e.g., F-type, G-type), the convective regions are smaller and less dynamic, which means
that the magnetic field generation is weaker. Hotter stars also tend to rotate more quickly, which can cause their
magnetic fields to become less concentrated in localized regions and reduce flare activity.

Effect on Flare Amplitude: As temperature increases, the star's magnetic field becomes less effective at producing
high-amplitude flares. The smaller convection zones in hotter stars limit the intensity of the magnetic activity that
drives flares.

 Rotation Rate: Slower Rotators: 
Small, low-mass stars like red dwarfs typically rotate more slowly compared to more massive stars. This
slower rotation allows for a more stable and concentrated magnetic field, which can result in more frequent
and intense flare events. 
Faster Rotators: 
More massive stars tend to rotate faster. The fast rotation leads to a more diffuse magnetic field, which, while still
present, is not as concentrated in specific regions. This reduces the likelihood of intense flare events since the
magnetic field is more spread out and less prone to the localized instabilities that cause flares.

Effect on Flare Amplitude: 
The slower rotation in low-mass stars helps build up stronger magnetic fields that can lead to large, energetic
flares. In higher-mass stars, the faster rotation leads to more spread-out, weaker magnetic fields, and hence
weaker flares.4. Star's Life span and Magnetic Activity:Red Dwarfs

Low-Mass Stars: 
These stars have long lifetimes, often on the order of tens to hundreds of billions of years. Their magnetic fields
remain active throughout their long lives, and they continue to experience flares. They are also more prone to
"flare events" because of their strong, active magnetic dynamos. 
Higher-Mass Stars: 
These stars have shorter life spans, and their magnetic activity typically wanes more quickly as they age. As they
exhaust their nuclear fuel, the mechanisms that generate strong magnetic fields become less effective. Thus, their
flare activity decreases with age.

Mass and Temperature Effects: 
As stellar mass and temperature increase, the star's magnetic activity decreases because:
More massive stars have weaker magnetic fields and less efficient magnetic dynamos.
Hotter stars have smaller convection zones, which limits the dynamo's efficiency and reduces flare activity.
Faster rotation in more massive stars results in more diffused magnetic fields, leading to weaker flares.

Thus, the amplitude of stellar flares tends to decrease as both stellar mass and
temperature increase: Primarily due to the diminished strength of the magnetic activity that
drives flare events in these stars.
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 Light curves for  Exoplanet Survey Data
 For a comprehensive description of all known Exoplanets refer to the NASA Exoplant Archive:
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS&constraint=de
fault_flag=1&constraint=disc_facility+like+%27%25TESS%25%27

 Exoplanet light curve
https://exoplanets.nasa.gov/exoplanet-watch/about-exoplanet-watch/background/ 
A light curve can show the change in brightness of a star when an exoplanet passes in front of the star. We can't
see the exoplanet directly using the transit method, but we can see the effect the exoplanet has on its star's
brightness as it transits.

The horizontal part of the light curve is the baseline brightness of the star when there are no exoplanets passing in
front of it. The dip in the light curve shows the star’s light blocked by the exoplanet during the transit. The deeper
the dip, the more light is blocked, the bigger the planet. If you observe the same star over many nights, you can
see how often the star’s light is blocked by a transiting exoplanet. The more frequently these transits occur, the
shorter the year is for the exoplanet, and the hotter the planet is. By looking at light curves, you can even tell
whether the planet has a thick atmosphere.

When we create light curves, we compare the brightness of the target star with the brightness of a few nearby
comparison stars, or comp stars. It's important to choose comp stars that are not variable stars (stars whose
brightness changes over time), so we use star charts from the American Association of Variable Star Observers
(AAVSO) to help us identify stars with stable brightness to compare with our target star.

"Detrending data" means to remove any noticeable trend or pattern (usually a linear increase or
decrease) from a dataset, effectively leaving behind only the fluctuations around that trend, allowing for
a more focused analysis on the variability within the data without the influence of the overall trend
line; this is typically achieved by fitting a line to the data and subtracting that fitted line from the original
data points.

The flare energy is calculated using the following equation
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 Mikulski Archives - Space Telescopes
The Mikulski Archive for Space Telescopes (MAST) is an astronomical data archive focused on the optical,
ultraviolet, and near-infrared. MAST hosts data from over a dozen missions like Webb, Hubble, Kepler,
Transiting Exoplanet Survey Satellite (TESS), and in the future Rome.
TESS's  two-year  all-sky survey  would  focus on nearby G-, K-, and M-type stars with apparent
magnitudes brighter than magnitude 12 and 1,000 of the closest red dwarfs.

 MAST TESS Transients Light Curve Files
https://tess.mit.edu/public/tesstransients/pages/readme.html
TESS periodically reads out entire frame of all four cameras, nominally every 30 minutes (below says 10 minutes).

 MAST Light Curve File Text Format

 BTJD    TJD   cts_per_s     e_cts_per_s     mag     e_mag       bkg  

TJD TESS Julian date, equal to Julian Data, JD - 2457000
BTJD               Barycentric TESS Julian Date (Day + Fraction of Day) - Relativistic coordinate time scale
cts_per_s Flux light curve in counts per second (photoelectrons per second).
e_cts_per_s Uncertainty in cts_per_s (1-sigma).
mag Light curve in TESS magnitudes (see Flux Calibration).
e_mag Uncertainty in mag (1-sigma). A value of 99.9 marks a 3-sigma upper limit.
bkg Local background in differential counts.

Get Data: LCF READPRN "lc_2022sfe_cleaned No Header.txt"( ):=

cols LCF( ) 7= rows LCF( ) 3760=  Choose 12 Days to View

Mag LCF
4 

:= Time LCF
1 

2797-:= Days Time
3759

Time
0

- 27.16=:= Time
1900

14.264=

Time
2800

20.597=

 TESS Measurement Interval: Time
1

Time
0

-( ) 24 60 min 9.994 min=

 Sample 12 Days of Data: LCF12 submatrix LCF 0, 1700, 0, 6, ( ):= Time1 LCF12
1 

:=

min LCF12
2 



 17.002-= max LCF12

2 



 67.942=
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Detrend Data Reference Line: Fluxline tt( ) 210 50 tt 15-( )+:=
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3, ( ):=
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 Flare Magnetic Activity and Physical Parameters of Exoplanet Host Stars 
Based on LAMOST DR7, TESS, Kepler, and K2 Surveys, 

The Astrophysical Journal Supplement Series, 261:26 (20pp) , 2022 August

 Data Columns:    ID    Peak Time    Begin      End     Duration   Amplitude     Teff      Radius     Energy

TDat READPRN "Data\Flare Parameters of Exoplanet System of TESS.txt"( ):=

KDat READPRN "Data\Flare Parameters of Kepler.txt"( ):=

K2Dat READPRN "Data\Flare Parameters of K2.txt"( ):=

TK2 stack TDat KDat, K2Dat, ( ):= temp TK2
6 

:=

Radius TK2
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:= R line temp Radius, ( ):= Rad t( ) R
0

R
1

t+:=

Energy TK2
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 Intro to TESS
The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Astrophysics Explorer-class mission that
is performing a near all-sky survey to search for planets transiting nearby stars. TESS completed its primary
mission in July of 2020, and has now entered its extended mission. The current extended mission will last until
September 2022, and will continue to scan the sky for exoplanets and transient events. The TESS mission is now
more community focused with a larger guest investigator (GI) program.
Over the last three years TESS has observed both the northern and southern hemispheres, with each hemisphere
being split into ≈13 sectors. Each sector is observed for ≈27 days by TESS’s four cameras.

The main data products collected by the TESS mission are described below.
 Full Frame Images (FFIs): The full sector images, with a cadence of 30-min (years 1 & 2) or 10-min (years 3
& 4).
 Target Pixel Files (TPFs): Postage stamp cut outs from the FFIs, focused on a selected target of interest. Each
stamp has a cadence of 2-min or 20-sec.
 Light Curve Files (LCFs): The time series data produced for each 2-min or 20-sec TPF object.
Info on the TESS mission and its data products, available at TESS GI pages.

 Light Curve Data Sources
https://exoplanetarchive.ipac.caltech.edu/
https://heasarc.gsfc.nasa.gov/docs/tess/TESS-Intro.html

 Lightkurve
Lightkurve offers a user-friendly way to analyze time series data obtained by telescopes, in particular NASA’s
Kepler and TESS exoplanet missions. You can search for the various data products for TESS on MAST using
the various Lightkurve functions for Full Frame Images, Target Pixel Files, or Light Files for Specific Objects. 
https://github.com/lightkurve/lightkurve/blob/48b406a2133267fc03f09d115ecd5cd95a35c702/src/lightkurve/se
arch.py#L723
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 XVI.  Evolution of Galaxy Structure over Cosmic Time
  The Evolution of Galaxy Structure over Cosmic Time, Christopher J. Conselice, Annu. Rev. Astron. Astrophy. 2014

 A. Structural Measurement Methods: Non Parametric
 Recent measurement technique involves the non-parametric method of measuring galaxy light distributions.
Non-parametric methods of measuring galaxy structure began in the photographic era with attempts to quantify the light
concentration in galaxies by Morgan (1962), although extensive quantitative measures were not done until the mid-1990s.
At present, the most common methods for measuring galaxy structure in a non-parametric way is through the CAS system
(e.g., Conselice 2003) and through similar parameters (Takamiya 1999). These parameters are designed to capture the
major features of the underlying structures of these galaxies, but in a way that does not involve assumptions about the
underlying form, as is done with the S´ersic fitting.

 Asymmetry Index.  One of the more commonly used indices is the asymmetry index(A) which is a measure of how
asymmetric a galaxy is after rotating along the line of sight center axis of the galaxy by 180 deg (Figure 2). It can be
thought of as an indicator of what fraction of the light in a galaxy is in non-symmetric components. The basic formula for
calculating the asymmetry index (A) is given by: 

Where I0 represents is the original galaxy image, I180 is the image after rotating it from its center by 180◦ . The mea-

surement of the asymmetry parameter however involves several steps beyond this simple measure. This includes carefully
dealing with the background noise in the same way that the galaxy itself is by using a blank background area (B0), and

finding the location for the center of rotation. The radius is usually defined as the Petrosian radius at which η(R) = 0.2,
although once out to large radius the measured parameters are remarkably stable. Operationally, the area B0 is a blank

part of the sky near the galaxy. Typical asymmetry values for nearby galaxies are discussed in Conselice (2003) with
∼ ∼ellipticals having values A  0.02 ± 0.02, while spiral galaxies are found in the range from A  0.07 − 0.2, while for

∼Ultra-Luminous Infrared Galaxies (ULIRGs), which are often mergers, the average is A  0.32 ± 0.19, and for merging
∼starbursts A  0.53 ± 0.22 

 Galaxy Morphology and Structure
allows a new way to compare with
cosmologically based galaxy formation
models, as well as those which include
extensive physics such as starformation,
AGN feedback and supernova in more
detailed hydrodynamical models. 

A graphical representation of how the concentration (C), asymmetry (A), clumpiness (S) are measured on an example
nearby galaxy. Within the measurements for A and S, the value ’I’ represents the original galaxy image, while ’R’ is this
image rotated by 180 deg. For the clumpiness S, ’B’ is the image after it has been smoothed (blurred) by the factor
0.3 × r(η = 0.2). The details of these measurements can be found in Conselice et al. (2000a) for asymmetry, A,
Bershady et al. (2000) for concentration, C, and Conselice (2003) for the clumpiness index, S.

VXPhysics 88



∗The average sizes of massive galaxies selected with Stellar Mass, M  > 1011 M⊙ as imaged in the POWIR (Conselice

et al. 2007) z < 2 data and GNS > 1.5 images (Buitrago et al. 2008; Conselice et al. 2011). The size evolution is
divided into galaxies with elliptical-like profiles, with Sersic indices (See below) n > 2.5, and disk-like profiles having n
< 2.5. The measured effective radius, re , is plotted as a function of the ratio with the average size of galaxies at the

∗same stellar mass measurements with M  > 1011 M⊙ at z = 0 from Shen et al. (2003).
   

 The Sérsic Index controls the degree of curvature of the profile. The smaller the value, the less centrally concentrated
the profile is and the shallower (steeper) the logarithmic slope at small (large) radii.

The average concentration (C), asymmetry (A), and clumpiness (SS) parameters for nearby galaxies as
measured in the optical R-band (Conselice 2003).

The clumpiness (or smoothness) (S) parameter is used to describe the fraction of light in a galaxy which is contained
in clumpy distributions. Clumpy galaxies have a relatively large amount of light at high spatial frequencies, whereas
smooth systems, such as elliptical galaxies contain light at low spatial frequencies. Galaxies which are undergoing star
formation tend to have very clumpy structures, and thus high S values. 

The original image Ix,y is blurred to produce a secondary image, Iσ
x,y   The size of the smoothing kernel σ is

determined by the radius of the galaxy,

 B. Galaxy Type Classification 
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 XVII.  Various Estimates of Age, Mass, and Density of Universe

 JADES CMB Mesurement*, H0JDC H0JDC 71
km

s Mpc
:=

1
H0JDC

13.39 Gyr=

1
Htwk

13.868 Gyr= TWK Local Estimate**, Htwk Htwk 68.55
km

s Mpc
=

 CMB Recombination Redshift/Cooling:
See Section IV. Equation of State

Trec z( ) 2.7250 z:=  zCMB
3000

2.725
:= zCMB 1100.917=

tCMB 13.8Gyr:=

 Critical Density, ρ0 ρ0 8.6443584621592 10
27-


kg

m
3

:=

 Matter-Radiation Equality: HMγ
2 = (8πG/3) ρ HMγ

8πG

3
ρ0:=

1
HMγ

14.418 Gyr=

 Hubble Constant from Gravitation Waves:
See Section XV. Standard Candles

Hg 70
km

s
Mpc

1-:= Ageg
1

Hg
:= Ageg 13.581 Gyr=

 Estimate Lifetime of the Sun:
See Section XIIC.

Agesun 10.8Gyr:=

 Estimates of Age of Globular Clusters, AgeGC

See Section XIII.

AgeGC 10Gyr:=

 Age of White Dwarfs from Cooling Curves
 of Local Galactic Disk***,  AgeWD

AgeWD 8Gyr:=

 Numerical Modeling of Thermochemically Driven Fluid Flow 
With Non-Newtonian Rheology Applied  to the Earth's Mantle, Agecool

Agecool 4.5Gyr:=
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Percent Decay of U238 vs. time (GYr)

Decayed%

PCU238 t( )
%

test

t

t.est 4.8Gyr:=

 %U238 Decayed:

 Estimated of Age of Earth

 Half Life U238:

*       XXIV. JADES: Lookback Time versus Red Shift and Age of Univ z = 13.2 Gyr
**     XIV. A. Current Value of Hubble's Law, H0. Data:  NASA Galaxy Recession from 3645 Galaxies, TWK
***   The Cool White Dwarf Luminosity Function And the Age of the Galactic Disk, S. K. Leggett
**** Tidal Recession Of The Moon From Ancient And Modern Data,  F. R. Stephenson, 1981

Agerecession 1.3Gyr:= ****Roche Limit - Time of Recession of Moon

 Parallax Distance, Event Horizon Telescope:
See Section X. Black Hole, Messier M87*

 Estimated Age Earth - Half-Life of Uranium:
Percent Decay U238, PCU238 = N(t)/N0
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   Measuring the of Age of the Universe - Globular Clusters

  Could place a lower limit from the  ages of astrophysical objects (pref. the oldest you can find). e.g..
      -  1. Age of  Globular clusters in our Galaxy; known to he very old. 
                   Need stellar evolution isochrones to fit to color-magnitude diagrams
      -2.  Age of  White dwarfs from their observed Luminosity Function cooling theory and assumed star formation rate
     - 3.  Age of H eavy elements. produced in the first Supernovae; somewhat model-dependent
     - 4.  Age-dating stellar populations in distant galaxies: 
                    this is very tricky and requires modeling of stellar population evolution. with many uncertain parameters.
  Related to the  Hubble time tH = l/H0, but the exact value depends on the cosmological parameters

 Ages of Globular Clusters
We measure the age of a globular cluster by measuring the magnitude of the main sequence turnoff or the difference
between that magnitude and the level of the horizontal branch, and comparing this to stellar evolutionary models of which
estimate the surface temperature and luminosity of stars as a function of time period
There are a fair number of uncertainties in these estimates, including errors and measuring the distances to the GC's, and
uncertainties in the isochrones used to drive ages, that is, stellar evolutionary models.
   

Inputs to stellar evolution models include oxygen abundance [O/Fe] treatment of convection, He abundance, reaction
rates of N + p O plus gamma. Heat diffusion, and conversions from theoretical temperatures and luminosity to observed
colors and magnitudes, and opacities; and especially distances.

 Wikipedia- Stellar Isochrone
"In stellar evolution, an isochrone is a curve on the
Hertzsprung-Russell diagram, representing a population of stars
of the  same age but with different mass.The
Hertzsprung-Russell diagram plots a star's luminosity against its
temperature, or equivalently, its color. Stars change their positions
on the HR diagram throughout their life. Newborn stars of low or
intermediate mass are born cold but extremely luminous. They
contract and dim along the Hayashi track, decreasing in
luminosity but staying at roughly the same temperature, until
reaching the main sequence directly or by passing through the
Henyey track. Stars evolve relatively slowly along the main
sequence as they fuse hydrogen, and after the vast majority of their
lifespan, all but the least massive stars become giants. They then
evolve quickly towards their stellar endpoints: white dwarfs,
neutron stars, or black holes.
Isochrones can be used to date open clusters because their
members all have roughly the same age. One of the first uses of
an isochrone method to date an open cluster was by Demarque
and Larson in 1963.  

If the initial mass function of the open cluster is known, isochrones
can be calculated at any age by taking every star in the initial
population, using numerical simulations to evolve it forwards
to the desired age, and plotting the star's luminosity and magnitude
on the HR diagram. The resulting curve is an isochrone, which can
be compared against the observational color-magnitude diagram to
determine how well they match. If they match well, the assumed
age of the isochrone is close to the actual age of the cluster."

Theoretical isochrones for 
 near-solar metallicity

 and a range of ages.
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Lsun Psun_earth 4 π 92.027 10
6

 mile( )2:=

ttwk_age_universe
1

Htwk
:= billion 10

9
:= ttwk_age_universe 13.868 billion yr=

 Estimate from Age of Chemical Elements Using Radioactive with Long Half Lives:
The Allende meteorite is well studied and has an age of 4.554 Gyr.

 Estimate of Radius of Curvature of the Universe: (Einstein's Old Static Idealized Model)

Putting into the Friedmann Equation, gives the radius of curvature of space in the universe

ρc 8.644
kg

m
3

10
27-

:= light_year c yr:= RE
c

4π G ρc
:= RE 11.77 light_year billion=

 XVIIC. Estimate the Lifetime of the Sun
   

 Calculation is Based on the Intensity of Light from Sun and the Amount of Liberated Fusion Energy
 Physics of the Sun ,  Dipak Basu,  Chapter 11.3   Proton Collision Rates in the Sun  

Psun_earth 1357W m
2-:= Total Area of Earth is 4π*d2

Power to Earth From Sun: 

Rate Sun is Burning Energy
=  Sun's Luminosity:

Lsun 3.74 10
26

 W=

 What Percent of Mass in Converted: One He atom has less than Mass of 4 H atoms
 Particle       Proton            Neutron           2 Protons+2 Neutrons        Alpha                  Difference

Units 10-27 kg:   1.672621637   1.674927211          6.695097696         6.64465620            0.050441496  

4 H He Energy+= M4p 6.692 10
27-

 kg:= MHe 6.644 10
27-

 kg:=

Mlost_Percent M4p MHe-( ) M4p
1-:= Mlost_Percent 0.717 %=

 Estimate Sun's Lifetime: Life Time = Total Energy (Esun) to Burn/fuse = Esun / Burn Rate

Mass of Sun: M☉ 1.989 10
30

 kg:= Esun 10% M☉ c
2 Mlost_Percent:=

Billion 10
9

:=

Lifesun

Esun

Lsun
:= Lifesun 10.863 Billion yr=

 Only 10% of the mass of the sun is at the core where it is hot enough for fusion to occur

 Estimate Age using Hubble Time and Chemical Element Radioactive Decay

Imagine the Hubble expansion scenario playing like a movie in reverse. Instead of galaxies moving away from each
other as time goes forward, galaxies would rush toward each other as time goes backward. Galaxies would be
closer and closer together in the past, until at some time in the distant past the matter that makes up the galaxies
would have been very close together. We can extrapolate back to this time, the beginning of the Universe. If we
know the expansion rate for the Universe and assume that it has been constant, we can run the clock backwards
and calculate how much time the Universe has been stretching.
The age of the universe is largely determined by the rate at which it expands, and the current value of the Hubble
‘constant’ fixes the Hubble time. The Hubble constant is an example of a stretching rate. The Hubble constant is
generally expressed in units of km/s/Mpc due to how it is measured. However, both km and Mpc are units of
distance and cancel out, so the Hubble constant, or any stretching rate, actually has units of 1/time. Again, assuming
that the expansion rate has been constant, we therefore have an expression for the age of Our Universe.  
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 Evolution of the Sun
https://en.wikipedia.org/wiki/Sun
"Evolution of a Sun-like star. The track of a one solar mass star on the Hertzsprung–Russell diagram is shown from the main
sequence to the post-asymptotic-giant-branch stage.

The Sun is about halfway through its main-sequence stage, during which nuclear fusion reactions in its core fuse hydrogen into
helium. Each second, more than four billion kilograms of matter are converted into energy within the Sun's core, producing
neutrinos and solar radiation. At this rate, the Sun has so far converted around 100 times the mass of Earth into energy, about
0.03% of the total mass of the Sun. The Sun will spend a total of approximately 10 to 11 billion years as a main-sequence star
before the red giant phase of the Sun. At the 8 billion year mark, the Sun will be at its hottest point according to the ESA's Gaia
space observatory mission in 2022.

The Sun is gradually becoming hotter in its core, hotter at the surface, larger in radius, and more luminous during its time on
the main sequence: since the beginning of its main sequence life, it has expanded in radius by 15% and the surface has
increased in temperature from 5,620 K to 5,772 K (9,930 °F), resulting in a 48% increase in luminosity from 0.677 solar
luminosities to its present-day 1.0 solar luminosity. This occurs because the helium atoms in the core have a higher mean
molecular weight than the hydrogen atoms that were fused, resulting in less thermal pressure. The core is therefore
shrinking, allowing the outer layers of the Sun to move closer to the center, releasing gravitational potential energy. According to
the virial theorem, half of this released gravitational energy goes into heating, which leads to a gradual increase in the rate at
which fusion occurs and thus an increase in the luminosity. This process speeds up as the core gradually becomes denser. At
present, it is increasing in brightness by about 1% every 100 million years. It will take at least 1 billion years from now to
deplete liquid water from the Earth from such increase. After that, the Earth will cease to be able to support complex,
multicellular life and the last remaining multicellular organisms on the planet will suffer a final, complete mass extinction."

VXPhysics 93



 Diverse Estimates for Mass and Densities of Matter in the Universe

ρBaryon

ρc
2.831 %=

 Astronomical Estimate the Number of Stars in the Universe: Current estimates suggest that there are
approximately Nstarsstars in the observable universe. This range is based on the estimated number of galaxies in the

observable universe and the average number of stars per galaxy.   Number of stars in a typical galaxy (e.g. Milky
Way )
Nstars_gal 100 10

9
:= Ngalaxies 2 10

12
:= Nstars Nstars_gal Ngalaxies:= Nstars 2 10

23
=

 Average Mass of a Star Mstar: The mass of stars varies widely, but for a rough estimate, you can use the

mass of the Sun as an average value. M☉ 1.989 10
30

 kg= Mtot_stars Nstars M☉:=

 Baryonic Mass Inventory for GALAXIES and Rarefied Media 
 from Theory and Observations of Rotation (RC) and Luminosity - 2023

ρBaryonGal_2023RC 6 10
25-


kg

m
3

:=

Ωb_stars 0.002:=Baryonic Content of Visible 
Universe, Persic, 1992 

ρBaryon for Universe: ρBaryon 3 10
28-


kg

m
3

:=
Ωb_total 0.003:=

ρBaryon ρc
1- 0.035=

 Adjust for Non-Stellar Baryonic Matter: Stars are not the only form of baryonic matter. There's also interstellar
and intergalactic gas, planets, and other forms of matter. To account for this, you can adjust the total mass. Typically,
the  M ass  of stars is estimated to be about  half  of the total baryonic matter, 

MBaryon 2 Mtot_stars:= MBaryon 7.956 10
53

 kg=
H0 73

km

s
Mpc( )

1-:=

 Estimate the Density of Matter,  Mass, and Number of Atoms in the Universe
The critical density is that combination of matter and energy that brings the universe coasting to a stop at time infinity.
Einstein’s equations lead to the following expression for the critical density  (ρcrit).  A flat universe implies ρcrit = 1.

 Equivalent to 10 Hydrogen atoms per m 3

ρc 3
H0

2

8π G
:= ρc 1.06

kg

m
3

10
26-

=

runiv 13 10
9

 light_year 1.23 10
26

 m=:= Vuniv
4

3
π runiv

3:=Radius Universe, rUniv

Mass of Observable Universe: MassUniv Vuniv ρc:= MassUniv 8.257 10
52

 kg= Vuniv 7.792 10
81

 L=

Mass Observable (Galaxies) Universe: ρgalax 3 10
28-


kg

m
3

:= Mgalax ρgalax Vuniv 2 10
51

 kg=:=

mH 1.67 10
27-

kg:= Numberatoms

MassUniv

mH
:= Numberatoms 4.944 10

79
=

 Fred Hoyle's Estimate  Mass from Observable Radius Fails Sanity Check

MFH
c
3

2G H0
:= MFH 8.301 10

52
 kg=

MBaryon

MassUniv
9.635=

 Estimates Based on Observable Volume of Universe Give Unreasonable Results

 Estimating the amount of baryonic matter by the number of observable stars
Estimating the amount of baryonic matter in the universe from the number of stars involves several
assumptions and simplifications. Stars make up a significant portion of the visible, or baryonic, matter in the
universe, but they do not account for all of it. There's also interstellar gas, planets, and other components.
Here's a basic approach to such an estimate:

 Mass of Hydrogen:
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 Oddo–Harkins rule: 
An element with an even atomic number 
is more abundant than the elements with
immediately adjacent atomic numbers.
He, C, N, O, Ne,  Mg, Si, S

Abundance (atom fraction) of the 
chemical elements in Earth's upper
continental crust as a function of 
atomic number; siderophiles shown in yellow.

Abundance of Si is normalized to 106.
While today’s Universe is mostly hydrogen 
and helium, oxygen is #3, with carbon #4.
Oxygen is ~1% of all atomic nuceli by mass.

 Measuring Age of Universe from Abundance of Elements in Solar System

 Abundance of elements in Earth's crust

 Nucleocosmochronology
Can use the radioactive decay of elements to age date the oldest stars in the Galaxy. Has been done with the half life of thorium 232
(half life of 14 giga years) and uranium 238 (half life of 4.5 giga years) and other elements. Measuring the ratio of various elements
provides an estimate of the age of the universe given theoretical predictions of the initial abundance ratio This is difficult because
thorium and uranium have weak spectral lines so this can only be done with enhanced thorium and uranium, (requires large surveys
for metal poor stars) and unknown  theoretical predictions for the production of R-process, (rapid neutron capture elements).
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Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and
geo- chemistry. The alternation of abundance between even and odd atomic number is known as the  Oddo–Harkins rule.
The rarest elements in the crust are not the heaviest, but are rather the siderophile elements (iron-loving) in the Golds-
chmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core; their
abundance in meteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been
depleted by preaccretional sorting in the nebula that caused them to form volatile hydrogen selenide and hydrogen telluride.

There are 92 elements.  All but the two of them are extremely anomalous, in terms of what we see in the crust of the
earth, relative to what we  see in Rocky material elsewhere in the universe. The two that are normative are manganese
and iron. Everything else is anomalous, and in some cases, extremely anomalous. So for  example, the crust of the earth is
630 times as much thorium 340 times as much uranium as  what we see in Rocky material in the rest of the universe. And
as  thanks for that super abundance of uranium and thorium, our planet a long lasting hot core. And that hot liquid iron
core, being circulated, has enabled our planet to have a  strong magnetosphere and developing  us that allows us to be
protected from deadly solar and cosmic radiation. It also prevented the  atmosphere and the oceans of the Earth from
being sputtered away by the particle radiation  from the sun.apacity. So we got 60 times  less sulfur, that's what enables
us to grow food, you're not going to grow any food or crops on  Mars, because there's way too much sulfur there. But
you can on the earth, so we're deficient  by a factor of 60 times in sulfur. But were abundant by a factor of 60 times in
aluminum, 90 times in titanium, which enables us to construct aircraft that can fly all over the world. These  are light metals
that have very high strength. And so we have in a very anomalous high abundance of these valuable elements. And they're
22 elements we see in the periodic table,  that are what we call vital poisons. If they exist in the crust of the earth, at too
high of an abundance level, it'll kill us, but too low of an abundant level, it will also kill us.

 So we have to have just the right amount of molybdenum, and the crust of the earth, just the right amount of  iron, just
the right amount of arsenic. There's actually proteins in your body that need arsenic, but you only need a very, very tiny
amount, and you get above that tiny amount, the arsenic will kill you. And it has to be at just the right level. And so all 22
of these vital poisons are extremely anomalous, and their abundance level here on planet Earth. And we don't see it
anywhere else in the universe. So it really does look like somebody engineered it to get it just right. And astronomers
again have discovered how this happened. How the early solar system formed in a gigantic cluster of about 20,000 stars
that existed much closer to the center of the  galaxy than the solar system exists today. And in that dense cluster of stars,
the early  emerging solar system got exposed to  three different kinds of supernova eruption events. It  got exposed to
neutron stars merging together to make black holes, where the supernova and  neutron star merging events happen at
exactly the right time, and the right distance from the  earth so that the earth was not destroyed. But on the other hand,
got sufficiently enriched in  all these elements and sufficiently depleted and elements be a problem. And then when all  that
enrichment depletion was accomplished, we got kicked out of the birth cluster and driven  to a distance twice as far away
from the center of the galaxy, what kicked us out, it was a  gravitational slingshot, where our solar system was interfacing
with four or five very massive  stars that slung us out of the birth cluster. And then when we got to the ideal place for
advanced life, we again engage another four or five, six massive stars that halted our  movement. And so  we were born in
 the most dangerous part of our galaxy. And we e nded up  in the safest part of our galaxy, but only after we got in rich.
Now, it's also true that our planet  Earth is anomalous, compared to all the other planets, and asteroids we see in in our
solar  system. And that's because our Earth formed, in a way incredibly different from the other  planets, the  other planets
 formed by gravitational accretion. And our solar system began with  10 planets, not eight, five gas giants and five rocky
planets. Two of those rocky planets, so  proto Earth and Thea collided with one another, when the Earth had oceans
1000s of  kilometers deep, that very deep ocean cushion the collision, so the earth was not destroyed. In  fact, what
happened, most of the mass of thea got absorbed into the earth. So the earth  became bigger, more massive and denser.
There is a  debris cloud around the new forming  Earth, that condensed to make the moon. And so we have this relatively
small planet, orbited  by a  gigantic moon that stabilizes the tilt of a rotation axis. It ensured that at the just right  time for
human beings, we have a rotation rate slowed down to 24 hours. And that this gas giant planet, it got kicked out by a
gravitational interaction with Jupiter and Saturn. And that  gravitational interaction basically slimmed down Mars from
being a planet about twice the  mass of Earth, down to a planet. That was only one night the mass of the Earth. This was
called the Smar small Mars problem. It took 20 years for astronomers to determine how did  Mars get to be so small,
but we now recognize if it wasn't for that transformation of Mars, there'd be no possibility for advanced life to exist on
planet Earth.
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 ESTIMATIONS OF TOTAL MASS AND ENERGY OF THE OBSERVABLE UNIVERSE  
Dimitar Valev, Physics International 5 (1): 15-20, 2014 

To  determine  gravitational  and  kinetic  energy  of  the observable universe, information of the size and total mass of
the universe are needed. There are different estimations of the mass of the observable universe covering very large

interval  from  3 × 1050 kg  (Hopkins,  1980)  to  1.6 × 1060 kg  (Nielsen, 1997).  Also the estimations of the size
(radius) of  the  universe  are  from 10 Glyr  (Hilgevoord,  1994) to more than of 78 Glyr (Cornish et al., 2004). 
  

 Estimate Mass of Universe by Dimensional Analysis
The  fundamental  parameters  as  the  gravitational constant G, speed of the light c and the Hubble constant 

H ≈ 70 km s−1 Mps−1 (Mould et al., 2000) determine the global properties of the universe. Therefore, by means of

these parameters, a mass dimension quantity mdim  related to the universe could be constructed: 

mdim kc
α

G
β

H0
γ

=

where,  k  is  a  dimensionless  parameter  of  the  order  of magnitude  of  a  unit  and  α, β and γ  are  unknown
exponents which have been found by means of analysis. Taking into account the dimensions of the quantities  in the
mx Equation  we obtain the system of linear equations for unknown exponents Equations: 

We use the determinant Δ of the system for the above mx Equation to find the parameters by Kramer's formula. 

 Check Exponent Values
This result gives the correct
solution for exponent α,β,λ

α 3:= β 1-:= γ 1-:=  Compare this to the above estimate

α 3β+ 0= α- 2β- γ- 0= β- 1=

 Theoretical Estimate of the Maximum Number of Stars in Universe

 Mass from Dimensional Analysis  Mass from Critical Density, ρc

mdim kc
α

G
β

H0
γ

= mdim
c
3

G H0
:= mdim 1.66 10

53
 kg= MassUniv 8.257 10

52
 kg=

 WMAP Estimate: Pecentbaryonic 0.046:=

MassUnivbaryonic Pecentbaryonic MassUniv:=

MassUnivbaryonic 3.798 10
51

 kg=

 The most common type of star turns out to be one with about 0.25 solar mass.

Mtypical 0.25 M☉:=

Numstars

MassUnivbaryonic

Mtypical
:=

Numstars 7.638 10
21

=
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 History of Numbering of the Stars - Cosmology
 We Live in a Time of Exponential Growth in Our Knowledge of the Universe (Cosmology)

 Estimate of Order of Magnitude (# of Zeros) of Number of "Known Stars"

List Number of Stars that were Cataloged, Known, or Estimated Based on Observations.
Example: 2500 BC could only see about 3,000, Yerkes Observatory cataloged 13,655 stars in 1800.

We are interested only in obtaining the Order of Magnitude of the Known, Cataloged, or Estimated Stars. 

Nstars READPRN "Num of Stars2.txt"( ):= Abraham 2200-:= Edwin_Hubble 1925:=

Zeros log Nstars
1 



:= Year Nstars

0 
:= rows Nstars( ) 20=
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 Ratio of Baryonic to Dark Matter
To calculate this ratio in a specific galaxy, astronomers measure the rotation speed of the galaxy at various
distances from its center. They then create a rotation curve based on the visible matter (using the mass of stars, gas,
etc.) and compare it with the observed rotation curve. The difference between these curves indicates the amount of
dark matter. By integrating the mass profiles of both baryonic and dark matter, astronomers can estimate their
respective contributions to the galaxy's total mass. While the exact ratio of dark matter to baryonic matter varies, a
commonly cited average is that dark matter makes up about 85% of the total matter content in galaxies, with baryonic
matter constituting about 15%. This implies a ratio of approximately 5.7:1 (dark matter to baryonic matter).

Applying this ratio gives for the total Matter in Universe Totmatter MBaryon 1 5.7+( ) 5.331 10
54

 kg=:=
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 XVIII. Uniformity of the CMBR is Evidence for Istropic Expansion and the ΛCDM
 1998 COBE Far Infrared Absolute Spectrophotometer Monopole Spectrum Measurements

 Assess If  the Origin of the Cosmic Microwave Background  Radiation  (CMBR)  is from the ΛCDM
 COBE Measurements of CMBR Spectrum - Test: Surface of Last Scattering (from Clouds)? Thermal Blackbody?

Column 1 = Reciprocal Wavelength, λ, from Table 4 of Fixsen et al., in units = cm-1

Column 2 = Intensity of FIRAS monopole spectrum computed as the sum of column 3, units = MJy/sr
CMBR READPRN "iras_monopole_spec_v1.txt"( ):= Tmw 2.7250K:=

λ CMBR
0 

:= λ
6

4.99= I CMBR
1 

:= n 0 1, rows I( ) 1-..:=

kb 1.3806505 10
23-


joule

K
:= h 6.6260693 10

34-
 joule sec:=

 Determine How Well COBE Spectrum Matches the Stretched Black Body Radiation at T = 2.750 K

 Model: Equation for Intensity of Ideal Black Body Spectrum  Normalize Units at  λ =  4.99 

Bλ λ T, ( ) 2h c
2 λ3 e

h c λ
kb T

1-









1-

:= Nunit I
6

Bλ
4.99
cm

Tmw, 








1-

:=

≈
a CONCLUSION - ORIGIN OF CMBR:

The CMB radiation was emitted 13.7 billion years ago, only a few hundred thousand years after the ΛCDM, long before
stars or galaxies ever existed. Radiation's temperature is defined by the wavelength of the individual photons that make it
up. As the Universe expands, not only does the radiation get less intense, but the stretching of space will stretch the
wavelength of the photons from the ΛCDM, which decreases the energy of the photons to longer wavelengths, which
correspond to the energy of lower temperatures. When neutral atoms form, the radiation can no longer interact, and
simply flies in a straight line until it interacts with something. 13.8 billion years later, that something is our eyes and
instruments, revealing an ultra-cold, uniform bath of radiation at 2.725 K. This is Evidence of radiation from a hot,
dense phase in the past that many had theorized as representing the origin of our expanding Universe. 

 CMB Energy: N19 10
19-

:= eV 1.6 10
19-

 C volt 1.6 J N19=:= kb 2.75 K 0 eV=

 Measured Uniformity ( Low Error ) of CMBR Temperature Reveals An Almost Perfect 2.725K Spectrum

Error% 3.0064 10
5-

=

 Scaling ==> Temp t( )
T0

a t( )
= λ

c

ν
:=
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


Nunit

λ
n

λ
1

a t( )
λ0= 1 z+( )λ0=

 Wavelength of Light, λ, Stretches with Expansion
Stretches with the scale factor, a and λ stretch factor, z. 

Given wavelength at emission, λo, λ today is

 Relic CMB Radiation Redshift
                  z = 3750 

Error%
1

rows I( ) 100
n

In Bλ
λn

cm
Tmw, 









Nunit-














:=

 The CMBR has the most Perfect (Planckian) Black Body Spectral Curve known: T = 2.725   ±  0.001 K

Passes Tolman Test
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 XIX A.  Planetary Data and Cl assical Newton's Calculation of Planetary Velocity

 Read Planetary Data (MDD) and Compare to Calculated Velocity from  Newton's  Equation, vss
https://nssdc.gsfc.nasa.gov/planetary/factsheet/

MDD READPRN "Planets Mass Dist Density.txt"( ):= MDD MDD
T:=

MERCURY  VENUS  EARTH MARS JUPITER SATURN URANUS NEPTUNE PLUTO

Mass Density Gravity EscapeVel Period Day Distance Perih, Aph, OrbPeriod OrbVelocity

Mass MDD
0 

:= Dist MDD
7 

:= VelData MDD
11 

:= vEarth VelData2
:=

dEarth Dist
2

:=

M☉ 1.98 10
30

 kg:= vNewton d( ) G
M☉

d 10
6

 km


1
km

s

:=

vNewton 6000( ) 4.692=

 Velocity vs Distance Curve, Falls Off Rapidly with Distance, is What is Expected for Galaxy Rotational Velocity

d 0 10, 6000..:=

 Note Excellent Agreement Between Planetary Velocity Data and Newton's Prediction
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 Compare this Newtonian Planetary Velocity Fall-Off Curve
               to the Galactic Curves Shown Below

        JUPITER       SATURN        URANUS                               NEPTUNE                        PLUTO

 Analytic Estimate:  Newton's Model Equation for Velocity vs. Distance, d 
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 XIX B. Our Galactic Home - The Milky Way
     

The Milky Way is a spiral galaxy that contains our solar system and is made up of billions of stars, gas, and dust. It's
estimated to be about 100,000 light years in diameter. At its core it has a Super Massive Black Hole: Sagittarius A*
(Sgr A*, pronounced "Sagittarius A-Star"). It is the only galaxy which we are able to examine in great detail. We can
resolve individual stars and analyze them spectroscopically. We can perform detailed studies of the interstellar medium
(ISM), such as the properties of molecular clouds and star forming regions. We can quantitatively examine extinction and
reddening by dust. Furthermore, we can observe the local dynamics of stars and gas clouds as well as the properties of
satellite galaxies (such the Magellanic Clouds). 
Finally, VLBI Paralax reveals that the Galactic center is at a distance of only 26,000 light years. This gives us the unique
opportunity to examine the central region of a galaxy at very high resolution.  Only through a detailed understanding of our
own Galaxy can we hope to understand the properties of other galaxies. Of course, we implicitly assume that the physical
processes taking place in other galaxies obey the same laws of physics that apply to us. If this were not the case, we would
barely have a chance to understand the physics of other objects in the Universe, let alone the Universe as a whole. 
    
  It is found that the Galaxy consists of several distinct components: 
  • a  thin disk of stars and gas with a radius of about 20 kpc and a scale height of about 300 pc, which also  hosts the Sun; 
  • a ≈ 1 kpc thick disk, which contains a different, older stellar population compared to the thin disk; 
  • a central bulge, as is also found in other spiral galaxies; 
  • and a nearly spherical Halo which contains most of the globular clusters, some old stars, and gas with different densities  
       and temperatures. The Figure below shows a schematic view of our Milky Way and its various components. 
 C            Schematic View of Milky Way Galaxy

 Refer to Rotation vs. Radius Plots on Next Page

 Schematic Structure of the Milky Way consisting of the
disk, the central bulge with the Galactic center, and the
spherical halo in which most of the globular clusters are
located. The Sun orbits around the Galactic center at a
distance of 8.5 kpc with orbital velocity of  220 km/s.

The upper curve is the observed rotation curve V(R) of
our Galaxy, i.e., the rotational velocity of stars and gas
around the Galactic center as a function of their
galacto-centric distance. The lower curve is the rotation
curve that we would predict based solely on the observed
stellar mass of the Galaxy. The difference between these
two curves is ascribed to the presence of dark matter, in
which the Milky Way disk is embedded. 

The observed rotational velocity V0 of the

Sun around the Galactic center is signifi-
cantly higher than would be expected from
the observed mass distribution. If M(R0) is

the mass inside a sphere around the
Galactic center with radius R0 =  8.5 kpc,

then V0 from Newtonian Mechanics is:

From the visible matter in stars we would expect a
rotational velocity of 160 km/s, but we observe
V0 = 220 km/s. This indicates that the galaxy

contains significantly more mass than is visible in the
form of stars.
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 XX. Indication of Cold Dark Matter: Rotational Velocity Curves - Milky Way Galaxy

 Observed Rotational Velocity of Galaxies - Velocity Does Not Falloff Rapidly Like Planets 
Observing the rotational velocity of stars in galaxies is a fundamental tool to derive the mass distribution in the galaxy.
Estimating the velocity of galaxy based on visible based on Classic Newton's or Kepler's Law's gives a velocity curve
(VRKep) that falls off quickly with distance.  The actual Galactic Velocity acts like there is a halo of matter around galaxy. 

Cold Dark Matter constitutes about 26.5% of the mass–energy density of the universe. The remaining 4.9% comprises all
ordinary matter observed as atoms, chemical elements, gas and plasma, the stuff of which visible planets, stars and
galaxies are made. The great majority of ordinary matter in the universe is unseen, since visible stars and gas inside
galaxies and clusters account for less than 10% of the ordinary matter contribution to the mass–energy density of the
universe.

 We want to calculate the Fraction of Cold Dark Matter in the Milky Way Galaxy

 Bright Matter Mass of Milky Way Galaxy: Mmwg 6.3 10
41

 kg 0.1:= kpc 3.08 10
16

km:=

Radial Scale Length: R0 2.1kpc:= rc 16kpc:= Mo 6 10
42

kg:=

 Expected Galactic V elocity Distribution (VKep) based on Keplerian type (Sun - Planetary) Mass Distribution
This is the type of falloff of velocity with distance we would expect to see from the mass of ordinary visible matter

VRKep READPRN "Galaxy Expected.csv"( ):= RKep VRKep
0 

4:= X 1 0.7
RKep

100
-:=

See Graph of Galaxy Velocity on Next Page
VKepler VRKep

1 
X







:=

 Determination of Amount of Dark Matter from Rotation Curve (RC) of Milky Way Galaxy
Radius (kpc), Vrotation (kms/s), Std Dev (km/s)

 DATA: Rotation Curve Parameters of the Milky Way and the Dark Matter Densit y, Yoshiaki Sofue, mdpi.com
Institute of Astronomy, Graduate School of Sciences, The University of Tokyo, Mitaka, Tokyo, Japan

Read Data for Rotation Curve: RCMW READPRN "Rotation curve of the Milky Way.txt"( ):=

 Milky Way
 Velocity:  

Vmwg RCMW
1 

:= Let rg be the radius of Galaxy: rg RCMW
0 

:= n 0 rows RCMW( ) 1-..:=

 Note the two prominent rotation velocity dips at radii 3 and 9 kpc.
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 ∼ ROTATION CURVE OF THE MILKY WAY OUT TO  200 kpc

https://iopscience.iop.org/article/10.1088/0004-637X/785/1/63/pdf

MWB READPRN "RC MILKY WAY 200 kpc -Bhattacharjee.txt"( ):=

Vmwb MWB
1 

:= rgb MWB
0 

:= u 0 1, rows MWB( ) 1-..:= VmwbS ksmooth rgb Vmwb, 12, ( ):=
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 Composite Rotation Curve of Milky Way Galaxy Showing Mass Components
Composite Rotation Curve including the bulge, disk, spiral arms, and dark halo. 

Yoshiaki Sofue, Mareki Honma , and Toshihiro Omodaka, PASJ 2018

The rotation velocity is written by the gravitational potential as V R( ) R
R
Φ


=

Φ

i

Φi=where

with Φi being the potential of the i-th mass component
. 

Knowing that Vi(R) = R ∂ Φi / ∂ R, we have
V R( )

i

Vi
2=
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 Mass Components
Below, the subscript BH represents black hole, b stands for bulge, d for disk, and h for the
dark halo.The contribution from the black hole can be neglected in sufficiently high accuracy,
when the dark halo is concerned. 

The mass components are usually assumed to have the following functional forms: 

The GC of the Milky Way is known to nest a massive black hole of mass of MBH ∼ 4 ×106 M☉ 

The RC is assumed to be expressed by a curve following the Newtonian potential of a point mass at
the nucleus.  and the rest of total mass is what is called dark matter---material that does not emit any
light (a small fraction of it is ordinary matter that is too faint to be detected yet) but has a significant
amount of gravitational influence.  The total mass of the galaxy, Mg, including the extended dark halo,

has been measured by analyzing the outermost RC and motions of satellite galaxies orbiting the galaxy,

and the ∼mass up to 100–200 kpc has been estimated to be  3 × 1011 M☉.   ,  

Where M☉ is the mass of Sun M☉ 1.989 10
30

 kg:= Mg 3 10
11

 M☉:= Rg 8kpc:=

 Fit a Curve, (VFit), to the Milky Way Rotation Curve

VFit ksmooth rg Vmwg, 10, ( ):=

 Simple Model for Milky Way Galaxy that Approximates Galaxy Rotation Curves

 Galactic Model:  Simple Model for Explaining Galaxy Rotation Curves ,  A. Wojnar, Sporea

 Model Parameters: M0 the total galaxy mass, R0 the observed scale length of the galaxy, 

rc the core radius and  fitting parameters b and β

Mgas 10
9.68

M☉:= Ms 10
9.76

M☉:= R0 2.6kpc:= rc 0.88kpc:= b 0.352:= β 1:=

Mg 5.967 10
41

 kg= Mtot Mgas Ms+:= XM Mgas Ms+( ) Mg
1-:=

vmodel r( )
G Mtot

r

R0

rc

r

r rc+










3β

 1 b 1
r

R0
+








+







:= vmodel 20kpc( ) 202.81
km

s
=

 Galactic Velocity Curve Fitting Model, vmw, with Five Fitting Parameters, Mg, R0, rc, b, and β 

 Mg = 0.3 Trillion Sun Masses
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 The Dark Halo Density profile:

 DM Model:  Untied Rotation Curve of the Galaxy, Decomposition Bulge, Disk, Dark Halo ,  Sofue 

ρhc and Rh are constants giving the central mass density (ρhc) and scale radius of the halo, respectively

Rh 5.5kpc:= light_year 0.000306kpc:=

ρhalo r( ) ρhc 1
r

Rh









2
+







1-

:= Vinf 4 π G ρhc Rh
2:= Vinf 230.557

km

s
=

 Estimate of Dark Halo -  Isothermal Spherical Distribution

Vinf 150
km

s
:= Vhalo r( ) Vinf 1

Rh

r kpc
atan

r kpc
Rh









-









1
km

s

:=

 Sum of Keplerian and Dark Halo Distributions vk_d VKepler Vhalo RKep( )


+:=

Velocity Plots: Milky War Data (++), Vhalo of Dark Matter (Blue), vk_d Sum of Dark and Kepler,
Galaxy Model (Purple), VFit Fit Curve to Data+ (Dashed Black), VKep Kepler Plot (Red)
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ρhc 0.03 M☉ parsec
3-:=
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 XXIA. Evidence for Λ-CDM "Big Bang" Model 

 What are the strongest physical evidences for the big bang?
  

Thanks to technological advances, astronomers can measure the current temperature of radiation lingering from the
cosmic origin event as well as the temperature of this radiation at various times in the past. As the figure below shows,
actual temperature measurements match the cooling curve a ΛCDM model (creation model)predicts, given the age of
the cosmos (≈13.8 billion years old) and its measured expansion rate. The most accurate of these past measurements
is the one in the middle of the cooling curve. This measurement fits the curve so closely that its error bar can’t be seen
in this graph. Figure 2: Evidence of Cooling from the ΛCDM Creation Event. The curve is the predicted cooling of the
universe according to the ΛCDM creation model with a cosmic age of 13.79 billion years and an average cosmic
expansion rate at 68.65 kilometers/second/megaparsec.The dots and error bars are actual temperature measurements
of the Cosmic Microwave Background Radiation.

 Does the Law of Conservation of Energy Apply to the ΛCDM.

As the Universe expands, Dark Energy is created.  Energy by itself is not conserved.  Energy can increase or
decrease whenever space itself changes in time. Photons have an energy that is inversely proportional to their
wavelength.  As space expands, the wavelength of photons increases and it energy decreases. So where it go? 
This is why the Cosmic Microwave Background Radiation is so cold. In GR, we have a more complicated theory
of Energy Conservation. 

 Generalized Energy Conservation 
It Generalized Energy Conservation of Covariant Conservation Law of the Stress-Energy Tensor. The change in
energy in the photon has to match the change in energy of space. 

13.8   
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 Test for Expansion: Comparison of Theoretical (Ideal) vs. Measured CMB Temp. from VLT
 Data Source: The evolution of the cosmic microwave background temperature  Measurements of T CMB at high
redshift from carbon monoxide excitation,  P. Noterdaeme , P. Petitjean , R. Srianand, C. Ledoux, and S. López

A milestone of modern cosmology was the prediction and serendipitous discovery of the cosmic microwave background
(CMB), the radiation leftover after decoupling from matter in the early evolutionary stages of the Universe. A prediction
of the standard hot Big-Bang model is the linear increase with redshift of the black-body temperature of the CMB 
(TCMB). This radiation excites the rotational levels of some interstellar molecules, including carbon monoxide (CO),

which can serve as cosmic thermometers. Using three new and two previously reported CO absorption-line systems
detected in quasar spectra during a systematic survey carried out using  Very Large Telescope,VLT / European Southern
Observatory, UVES, we constrain the evolution of  TCMB to z ≈ 3. Combining precise measurements with previous

constraints, we obtain TCMB (z) = (2.725 ± 0 .002) × (1 + z)1 -ß K with ß = -0.007 ± 0.027, a more than two-fold

improvement in precision. The measurements are consistent with the standard (i.e. adiabatic, ß = 0) Big-Bang model and
provide a strong constraint on the effective equation of state of decaying dark energy (i.e. weff = - 0.996 ± 0.025).

Tcmbdat READPRN "Redshift vs Tcmb to z1 G Hurier 2014C.txt"( ):=

 Theoretical (Ideal) CMB Temperature vs Redshift z  Measured CMB Temperature vs Redshift z

Tcmb_theo z( ) 2.725 1 z+( ):= β 0.007-:= Tcmb_data z( ) 2.725 1 z+( )1 β-
:=

Measurements are based on the rotational excitation of CO molecules are represented by red dots.
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 The evolution of the cosmic microwave background temperature (2011)

     Measurements of TCMB at high redshift from carbon monoxide excitation
     P. Noterdaeme1, P. Petitjean2, R. Srianand3, C. Ledoux4, and S. López

ABSTRACT
A milestone of modern cosmology was the prediction and serendipitous discovery of the cosmic microwave
background (CMB), the radiation leftover after decoupling from matter in the early evolutionary stages of the
Universe. A prediction of the standard hot Big-Bang model is the linear increase with redshift of the black-body
temperature of the CMB (TCMB). This radiation excites the rotational levels of some interstellar molecules, including

carbon monoxide (CO), which can serve as cosmic thermometers. Using three new and two previously reported CO
absorption-line systems detected in quasar spectra during a systematic survey carried out using VLT/UVES, we
constrain the evolution of TCMB to z ∼ 3. 

Combining our precise measurements with previous constraints, we obtain 

                                       TCMB(z) = (2.725 ± 0.002) × (1 + z)1−β K 

with β = −0.007 ± 0.027, a more than two-fold improvement in precision. The measurements are consistent with the
standard (i.e. adiabatic, β = 0) Big-Bang model and provide a strong constraint on the effective equation of state of
decaying dark energy (i.e. weff = −0.996 ± 0.025).

Black-body temperature of the cosmic microwave background radiation as a function of redshift. The star represents
the measurement at z = 0 (Mather et al. 1999). Our measurements based on the rotational excitation of CO molecules
are represented by red filled circles at 1.7 < z < 2.7. Other measurements at z > 0 are based (i) on the S-Z effect (blue
triangles at z < 0.6, Luzzi et al. 2009) and (ii) on the analysis of the fine structure of atomic carbon (green open squares:
z = 1.8, Cui et al. 2005; z = 2.0, Ge et al. 1997; z = 2.3, Srianand et al. 2000; z = 3.0, Molaro et al. 2002). Upper
limits come from the analysis of atomic carbon (from the literature and our UVES sample, see Srianand et al. 2008)
and from the analysis of molecular absorption lines in the lensing galaxy of PKS 1830-211 (open circle at z = 0.9,
Wiklind & Combes 1996).
The dotted line represents the adiabatic evolution of TCMB as expected in standard hot Big-Bang models. The solid
line with shadowed errors is the fit using all the data and the alternative scaling of TCMB(z) (Lima et al. 2000) yielding 

β = −0.007 ± 0.027. The red dashed curve (resp. green dashed-dotted) represents the fit and errors using S-Z + CO
measurements (resp. S-Z + atomic carbon).
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 XXIB.  Time Dilation in Type Ia Supernova Spectra at High Redshift - Tolman Test
Time Dilation in Type Ia Supernova Spectra at High Reshift, S. Bondi, Am. Astronomical Society, April 19, 2008
   

One of the most straightforward and direct substantiations of the ΛCDM creation model is a phenomenon
referred to as time dilation. The time dilation test is based on Einstein’s special theory of relativity. The redshift, z, is a
fundamental observational quantity in Friedman-Lemaitre-Robertson-Walker (FLRW) models of the universe. It relates
the frequency of light emitted from a distant source to that detected by a local observer by a factor of 1/(1 + z).
One important consequence is that the observed rate of any  time variation in the intensity of emitted radiation will also
be proportional to 1/(1 + z) (see Weinberg 1972).  This phenomenon is directly related to time dilation because the
stretching of the wavelength corresponds to a  stretching of the time intervals between the peaks of the light wave. The
 further away a galaxy is, the faster it appears to be receding from us due to the expansion of the universe.  (There is also a
1+z stretching of the wavelength of radiation.) Due to their large luminosities (several billion times that of the Sun) and
variability on short timescales (20 days from explosion to peak luminosity; Riess et al. 1999; Conley et al. 2006), Type Ia
supernovae (SNe Ia) are ideally suited to probe these time dilation effects across a large fraction of the observable
universe. The suggestion to use supernovae as cosmic clocks and tested on light curves of low-redshift SNe Ia in the
mid- 1970s (Rust 1974), but only since the mid-1990s has this effect been unambiguously detected in the light curves of
high-redshift objects (Leibundgut et al. 1996; Goldhaber et al. 2001). These latter studies show that the light curves of
distant SNe Ia are consistent with those of nearby SNe Ia whose time axis is dilated by a factor of 1 + z.
However, there exists an intrinsic variation in the width of SN Ia light curves that is related to their peak luminosities
(Phillips 1993), such that more luminous SNe Ia have broader light curves. This width-luminosity relation is derived using
low-redshift SNe Ia for which the time dilation effect.

 Time Dilation - Apparent aging rate vs. 1/(1 + z)  
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Apparent aging rate vs. 1/(1 + z) for the 13 high-redshift (0.28 < z < 0.62) and 22 low-redshift (z < 0.04) SNe Ia

in our sample. Overplotted are the expected 1/(1 + z) time dilation (solid line) and the best-fit 1/(1 + z)b model (with b
=0.97; dotted line and gray area). The dashed line corresponds to no time dilation, as expected in the tired-light model,
clearly inconsistent with the data. Inset: Close-up view of the low-redshift sample. 

Using the standard definition of redshift, z = (λ0 - λ1)/λ1 = ν1/ν0 - 1, we obtain a relationship between observed and

rest-frame time intervals in a RW metric as a function of redshift z:

 The prediction of time dilation proportional to  1 + z  is generic to expanding universe models, whether the
underlying theory be general relativity.  

 Photometry of Supernova Ia:
 P eaking of  Light Curve
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  XXII. Λ-CDM Model Theory and Parameters
Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076v3  [astro-ph.CO]  20 Mar 2014

 

 See Section IIC: Table of The Hypothesized Thermal History of the Universe
   See Section XXXII:  Some Key Problems of the ΛCDM Cosmology

  

 Introduction
 Planck temperature power spectrum multipole,  ℓ
The discovery of the cosmic microwave background (CMB) by Penzias & Wilson (1965) established the modern paradigm
of the hot ΛCDM cosmology. Almost immediately after this seminal discovery, searches began for anisotropies in the
CMB – the primordial signatures of the fluctuations that grew to form the structure that we see today. This describes the
cosmological parameter results from the Planck temperature power spectrum. This model is based upon a spatially-flat,
expanding Universe whose dynamics are governed by General Relativity and whose constituents are dominated by cold dark
matter (CDM) and a cosmological constant (Λ) at late times. The primordial seeds of structure formation are
Gaussian-distributed adiabatic fluctuations with an almost scale-invariant spectrum. This model is described by only six key
parameters. The focus is to investigate cosmological constraints from the temperature power spectrum measured by Planck.
XXIII summarizes some important aspects of the  Planck temperature power spectrum; we plot this as
  D ≡ ℓ (ℓ + 1)CL \ /2 π (a notation we will use throughout this paper) versus multipole ℓ. The temperature likelihood used in

this paper is a hybrid: over the multipole range ℓ = 2 - 49, the likelihood is based on a component-separation algorithm
applied to 91% of the sky.  See XXVI: Calculation of CMB Multiple Moments Power Spectra, ℓ. 

 Λ-CDM Theoretical model 
 

We shall treat anisotropies in the CMB as small fluctuations about a Friedmann-Robertson-Walker metric whose evolution is
described by General Relativity. We parameterize the  mass fraction in helium by Y P. The process of standard big bang

nucleosynthesis (BBN) can be accurately modeled, and gives a predicted relation between YP , the photon-baryon ratio,

and the expansion rate (which depends on the number of relativistic degrees of freedom). 

 Ionization history -  Optical Depth due to Reionization  (Thomson Scattering) , τ and Ionization Fraction, xe

To make accurate predictions for the CMB power spectra, the background ionization history has to be calculated to high
accuracy. Although the main processes that lead to recombination at z  ≈ 1090 are well understood, cosmological param-
eters from Planck can be sensitive to sub-percent differences  in the ionization fraction xe. The process  of recombination

takes the Universe from a state of fully ionized hydrogen and helium in the early Universe, through to the completion of

recombination with residual fraction xe ≈ 10 -4.  Sensitivity of the CMB power spectrum to xe enters through changes to the

sound horizon at recombination, from changes in the timing of recombination, and to the detailed shape of the  recombination
transition, which affects the thickness of the last-scattering surface and hence the amount of small-scale 
diffusion  (Silk) damping, polarization, and line-of-sight averaging of the perturbations. Cosmological parameters from
Planck can be sensitive to sub-percent differences in the ionization fraction xe.
 

The background recombination model should accurately  capture the ionization history until the Universe is reionized  at late
times via ultra-violet photons from stars and  or active  galactic nuclei. We approximate reionization as being relatively
sharp, with the mid-point parameterized by a redshift zre (where  xe = f/2) the  Redshift of Half Reionization  Width

parameter zre = 0.5. Hydrogen reionization and the first reionization of helium are assumed to occur simultaneously, so that

when reionization is complete xe =  f = 1 + fHe ≈ 1.08, where fHe is the helium - to-hydrogen ratio by number. 
  

In this parameterization, the optical depth is almost independent of  zre and the only impact of  the specific functional form on

cosmological parameters comes  from very small changes to the shape of the polarization power  spectrum on large angular

scales. The second reionization of helium (i.e., He+ --> He ++ ) produces very small changes to the  power spectra 
( Δτ ≈ 0.001, where τ is the optical depth to Thomson scattering) and does not need to be modeled in detail.  We include
the second reionization of helium at a fixed redshift  of z = 3.5 (consistent with observations of Lyman- a forest lines  in
quasar spectra, e.g., Becker et al. 2011), which is sufficiently  accurate for the parameter analyses described in this paper.
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 Initial conditions:  Curvature Power Spectrum
In our baseline model we assume purely adiabatic scalar perturbations at very early times, with a (dimensionless)
Curvature Power Spectrum parameterized by

with  Scalar Spectrum Power-Law Index, ns and  Running of Spectral Index, dns /d ln k taken to be constant. For most

of this paper we shall assume no “running”, i.e., a power-law spectrum with dns/dln k = 0. The pivot scale, k0, is chosen to

be k0 = 0.05 Mpc-1, roughly in the middle of the logarithmic range of scales probed by Planck. 

With this choice, ns is not strongly degenerate with the Amplitude Parameter As. 

The  A mplitude of the small-scale linear CMB power spectrum is proportional to e-2τ A s. Because Planck measures this

amplitude very accurately there is a tight linear constraint between t and ln As. For this reason we usually use ln As as a base

parameter with a flat prior, which has a significantly more Gaussian posterior than A s . A linear parameter re- definition then

also allows the degeneracy between t and A s to bewith ns and dns /d ln k taken to be constant. For most of this paper we

shall assume no “running”, i.e., a power-law spectrum with dns /d ln k = 0. The pivot scale, k 0 , is chosen to be 

k 0 = 0.05 Mpc-1, roughly in the middle of the logarithmic range of scales probed by Planck. With this choice, ns is not

strongly degenerate with the amplitude parameter As to be explored efficiently. (The degeneracy between τ and A s is broken

by the relative amplitudes of large-scale temperature and polarization CMB anisotropies and by the non-linear effect of CMB
lensing.) We shall also consider extended models with a significant amplitude of primordial gravitational waves (tensor
modes). Throughout this paper, the (dimensionless) tensor mode spectrum is parameterized as a power-law with

We define r0.05 = At/ As , the primordial tensor-to-scalar ratio at k = k 0 . Our constraints are only weakly sensitive to the

tensor spectral index, n t (which is assumed to be close to zero), and we adopt the theoretically motivated single-field

indication consistency relation nt = -r0.05/8, rather than varying n t independently. We put a flat prior on r0.05, but also

report the constraint at k = 0.002 Mpc-1 (denoted r0.002), which is closer to the scale at which there is some sensitivity to

tensor modes in the large- angle temperature power spectrum. Most previous CMB experiments have reported

constraints on Ratio of tensor primordial power to curvature power at k0 = 0.05 Mpc−1, r0.05

 Power spectra
Over the last decades there has been significant progress in improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization history and set of cosmological parameters.

 Base parameters
The first section of Table 1 lists our base parameters that have flat priors when they are varied, along with their default
values in the baseline model. When parameters are varied, unless otherwise stated, prior ranges are chosen to be much
larger than the posterior, and hence do not affect the results of parameter estimation.
  

 Derived parameters:  θMC ∗   Approximation to r  /D A (CosmoMC)

Matter-radiation equality zeq is defined as the redshift at which ργ + ρν = ρc + ρb (where ρν approximates massive

neutrinos as massless). The redshift of last-scattering, z∗, is defined so that the optical depth to Thomson scattering from

 z = 0 (conformal time η = η 0 ) to z = z∗ is unity, (Redshift for which the optical depth equals unity) assuming no

reionization. The optical depth is given by                                                    
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where  τ = −a ne σT (and ne is the density of free electrons and σT is the Thomson cross section). We define the

angular scale of the sound horizon at last-scattering, θ∗ = rs (z∗) /DA(z∗), where rs is the sound horizon.

Optical Depth of  r* = 0.054 means that about one 

CMB photon in 18 scatters from a free electron.with R ≡ 3ρb /(4 ργ).

 The parameter θMC ∗  (approximation to r /D A (CosmoMC)) in Table 1 is an approximation to θ∗ that is used in

CosmoMC and is based on fitting formula given in Hu & Sugiyama (1996). Baryon velocities decouple from the photon
dipole when Compton drag balances the gravitational force, which happens at τd ∼  1, where

Here, again, τ is from recombination only, without reionization contributions. We define a drag redshift zdrag , so that 

τd ( η (zdrag )) = 1. The sound horizon at the drag epoch is an important scale that is often used in studies of baryon

acoustic oscillations; we denote this as rdrag = rs(zdrag ).zdrag is the Redshift at which baryon-drag optical depth equals

unity We compute zdrag and rdrag numerically from camb).

The characteristic wavenumber for damping, kD , is given by

We define the angular damping scale, θD = p/ (kD DA), where DA is the comoving angular diameter distance to z*.

For our purposes, the normalization of the power spectrum is most conveniently given by As . However, the

alternative measure σ8 is often used in the literature, particularly in studies of large-scale structure. By definition, σ8 is the

rms fluctuation in total matter (baryons + CDM + massive neutrinos) in 8 h-1 Mpc spheres at z = 0, computed in linear
theory. It is related to the dimensionless matter power spectrum, Pm , by

where R = 8 h-1 Mpc and j1 is the spherical Bessel function of order 1. In addition, we compute Ωmh3 (matter density

Ωm//ρcritical) a well-determined combination orthogonal to the acoustic scale degeneracy in flat models; see e.g., Percival

et al. 2002 and Howlett et al. 2012), 109 As e
-2 t (which determines the small-scale linear CMB anisotropy power),

r0.002 (the ratio of the tensor to primordial curvature power at k = 0.002 Mpc -1), Ωmh2  (the physical density in massive

neutrinos), and the value of YP from the BBN consistency condition. 

 Acoustic scale
The characteristic angular size of the fluctuations in the CMB is called the acoustic scale. It is determined by the
comoving size of the sound horizon at the time of last-scattering, rs(z∗), and the angular diameter distance at which we

are observing the fluctuations, DA(z∗). With accurate measurement of seven acoustic peaks, Planck determines the

observed angular size θ∗ = rs /DA (CosmoMC) to better than 0.1% precision at 1σ :
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The tight constraint on θ∗ also implies tight constraints on some combinations of the cosmological parameters that

determine DA and rs . The sound horizon r s depends on the physical matter density parameters, and DA depends on the

late-time evolution and geometry. Parameter combinations that fit the Planck data must be constrained to be close to a
surface of constant θ∗ .This surface depends on the model that is assumed. For the base Λ CDM model, the main

parameter dependence is approximately described by a 0.3% constraint in the three-dimensional Ω m – h – Ωb h2

subspace:

 Reducing further to a two-dimensional subspace gives a 0.6% constraint on the combination

 Hubble parameter and dark energy density - Fixed Parameter: Matter Density Parameter,   Ωm  h 3

The Hubble constant, H0 , and matter density parameter, Ωm , are only tightly constrained in the  Combinatio n Ωm h3

discussed above, but the extent of the degeneracy is limited by the effect of Ωm h2 on the relative heights of the acoustic

peaks. The projection of the constraint ellipse shown in onto the axes therefore yields useful marginalized constraints on
H0 and Ωm (or equivalently ΩΛ) separately. We find the 2% constraint on H0 :

         H0 = (67.4 ± 1 . 4)  km s−1Mpc−1.               ΩΛ = 0.686 ± 0.020              Ωmh2 = 0.1423 ± 0.0029

 Optical depth   - Reionication Optical Depth Parameter,  τ
Small-scale fluctuations in the CMB are damped by Thomson scattering from free electrons produced at reionization. This

scattering suppresses the amplitude of the acoustic peaks by e -2 τ on scales that correspond to perturbation modes with
wavelength smaller than the Hubble radius at reionization. Planck measures the small-scale power spectrum with high

precision, and hence accurately constrains the damped amplitude e -2 τ A  . With only unlensed temperature power
spectrum data, there is a large degeneracy between t and As, which is weakly broken only by the power in large-scale

modes that were still super-Hubble scale at reionization. However, lensing depends on the actual amplitude of the matter
fluctuations along the line of sight. Planck accurately measures many acoustic peaks in the lensed tempera- ture power
spectrum, where the amount of lensing smoothing depends on the fluctuation amplitude. Furthermore Planck’s lensing
potential reconstruction provides a more direct measurement of the amplitude, independently of the optical depth. The
combination of the temperature data and Planck’s lensing reconstruction can therefore determine the optical depth τ
relatively well. The combination gives τ = 0.089 ± 0.032 (68%; Planck + lensing).
This provides marginal confirmation (just under 2 σ ) that the total optical depth is significantly higher than would be

∼obtained from sudden reionization at z  6, and is consistent with the WMAP-9 constraint, τ = 0.089 ± 0.014, from
large-scale polarization.

Each free electron has a cross-section  σe = 6.65 10-29 m2

for scattering with a  photon given electron number density,
ne,  resulting in optical depth, τ*.

 Spectral index 
The scalar spectral index (see below) is measured by Planck data alone to 1% accuracy: ns = 0.9616 ± 0.0094 (68%;

Planck).  Since the optical depth t affects the relative power between large scales (that are unaffected by scattering at

reionization) and intermediate and small scales (that have their power suppressed by e -2 τ), there is a partial degeneracy
with ns . Breaking the degeneracy between t and ns using WMAP polarization leads to a small improvement in the

constraint: ns = 0.9603 ± 0.0073 . Comparing the two values of ns, it is evident that the Planck temperature spectrum

spans a wide enough range of multipoles to give a highly significant detection of a deviation of the scalar spectral index
from exact scale invariance (at least in the base ΛCDM cosmology) independent of WMAP polarization information.
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 Planck Collaboration: Cosmological parameters

Horizontal dashed lines correspond to the fixed base model parameter value, and 
vertical dashed lines show the mean posterior value in the base model for Planck + WP.
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 Λ-CDM Model Parameters
           

 Wikipedia

"The current standard model of cosmology, the Lambda-CDM model, uses the FLRW metric. By combining the
observation data from some experiments such as WMAP and Planck with theoretical results of Ehlers–Geren–Sachs
theorem and its generalization, astrophysicists now agree that the early universe is almost homogeneous and isotropic
(when averaged over a very large scale) and thus nearly a FLRW spacetime. That being said, attempts to confirm the
purely kinematic interpretation of the Cosmic Microwave Background (CMB) dipole through studies of radio galaxies
and quasars show disagreement in the magnitude. Taken at face value, these observations are at odds with the Universe
being described by the FLRW metric. Moreover, one can argue that there is a maximum value to the Hubble constant
within an FLRW cosmology tolerated by current observations, H0 = 73±8 km/s/Mpc

 Hubble Tension - Difference Between Local and Global Determinations of H0

H0 from Cepheids and SNIa = 73.04 kms-1Mpc-1    Planck CMB = 67.4 ± 0.5  kms-1Mpc-1.  Discrepancy is ≈ 5σ

 2018 Planck CMB Results
https://arxiv.org/abs/1807.06209

 Planck Collaboration 2018 Results. VI. Cosmological Parameters
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       CMB Data Analysis Methodology:  Angular Temperature Power Spectrum (TT)

 CMB Data Analysis Methodology
Data pipeline and radical compression. Maps are constructed for each frequency channel from the data timestreams,
combined, and cleaned of foreground contamination by spatial (represented here by excising the galaxy) and
frequency information. Bandpowers are extracted from the maps and cosmological parameters from the bandpowers.
Each step involves a substantial reduction in the number of parameters needed to describe the data, from potentially
l0'° —> 10 for the Planck satellite.
In every step of CMB data analysis the aim is to reduce the volume of data without losing information.

 CMB Data Analysis Pipeline

 CMB temperature anisotropies are expressed in terms of multipoles:

then the complex coefficients alm,

 in a homogeneous and isotropic 
universe, satisfy the condition

alm n
ΔT n( )

T
Ylm n( )






d=

Where alm follow the Gaussian (maximally randomized) 

distribution with zero mean and variance given by Cl :It is the variance of the temperature field which
carries the cosmological information, rather than the
values of the individual aℓms; in other words the power

spectrum in ℓ fully characterizes the anisotropies. The
power at each ℓ is (2ℓ+1)Cℓ/(4π), and a statistically

isotropic sky means that all ms are equivalent. 

An unbiased estimator of Cl is defined as:

Cl
1

2l 1+
l-

l

m

alm alm( )
=

= *

 CMB Likelihood
CMB temperature and polarization observations can constrain cosmological parameters if the likelihood function·
can be computed exactly.
Computing the likelihood function exactly in a brute force way is computationally challenging since it involves·
inversion of the covariance matrix i.e., O(N3) computation.
In Cosmological parameter estimation a theoretical model is represented by its angular power spectrum Cl .·
For a set cosmological parameters we can compute the angular power spectrum Cl using publicly available·
Boltzmann codes like CMBFAST and CAMB (Code for Anisotropies in the Microwave Background) and try
to fit that with observed Cl .   CMBquick (Refer to Section XVI) is implemented in Mathematica.

If δT/T is expanded in terms of  Spherical Harmonics: Ylm
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 XXIII.  Planck Microwave Anisotropy Probe CMB Angular Temp. Power Spectrum (TT)

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in 2001.
Planck, launched in 2009, images the sky with more than 2.5 times greater resolution than WMAP.

https://irsa.ipac.caltech.edu/data/Planck/release_3/ancillary-data/cosmoparams/  CMB Table Has Peaks & Troughs
See CMB Table Below

CMB Holds a Matrix of Values

Planck_tt READPRN "COM_PowerSpect_CMB-TT-binned_R3.01.txt"( ):=

MM Planck_tt
0 

:= PS Planck_tt
4 

:=

0 1000 2000
0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

10

100

1000

1 10
4


Planck Temperature Power Spectrum (TT) vs Multipole Moment Data

Multipole Moment, The Symbol for Multiple Moment is the letter "l"

B
in

ne
d 

D
l, 

T
em

p.
 V

ar
ia

tio
n 

(u
K

^2
)

D
i, 

L
og

 S
ca

le
 T

em
pe

ra
tu

re
 (

uK
^2

)

PS

CMB 1 
PS

220

MM CMB 0 
, MM, 

 WMAP:  TT AND TE ANGULAR POWER SPECTRUM PEAKS FOR ABOVE SPECTRUM

 The Characteristics of the Above Spectrum Reveals the Values Needed to Model BB Cosmology

Baryonic fraction Mb+d = Mb+d+h = 0.072

 CMB Peaks and Troughs Table

Based on the the spatial variation of the CMB and the Model Parameters of the Λ-CDM ,
astrophysicists predicted a Hubble Constant of 67.5 ± 0.5 km/s per megaparsec.
This is different from the Hubble Constant value measured from the change of
recessional velocity of galaxies with distance.
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 Lookback Time versus Red Shift and Age of Universe  (See Section VIII)
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        The Plot shows that for z > 10, 
z contributes little to the age of the universe ζ represents redshift

 2023 Estimate z=10  is 13.30 Gyr

tBB 13.8Gyr:= Gyr

 Evolution of the Hubble Factor:  Mass Conservation of non-relativistic matter implies ρm∝  a−3 = (1 + z)3 . 

In the ΛCDM model, dark energy is assumed to behave like a cosmological constant: ρΛ∝  a0 = (1 + z)0 . 

The density of radiation (and massless neutrinos) scales as ρr∝  a−4 = (1 + z)4  because the number density 

∝of photons is  a−3 = (1 + z)3 and the mass E/c2 = hν/c2 ∝ of each photon scales as E  λ−1 ∝  (1 + z)1 ∝  a−1.    

 Dynamical Equation Specifying the Evolution of the Hubble Factor of Our Universe

Ωr0 8.7 10
5-

:= H

H0
= H_H0 z( ) Ωm0 1 z+( )3 ΩΛ0+ Ωr0 1 z+( )4+:=
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 Red Line is Scale on Left (1 to 1000).  Blue Dotted Line is scale on Right (1 to 10)

 Different z, Different Time, & Different Place
It must always be remembered that different
redshifts correspond not only to different times,
but also to different places. Thus, when we
presume to connect observations of galaxies at
different redshifts to derive an overall picture of
cosmic evolution, we are implicitly assuming
homogeneity; i.e. that "back-then, over there" is
basically the same as "back-then, over here". For
this to be true it is crucial that surveys for
high-redshift galaxies contain sufficient
cosmological volume to be "representative" of the
Universe at the epoch in question. As we shall see,
at z > 5 this remains a key challenge with current
observational facilities.
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 XXIV. Advances in Measurement and Technology for Measuring Hubble Constant

 Hubbles's original value in 1923 was 500 kms s-1 Mpc-1.  The high value was that he overestimated the distance. 
Unknown to him there are two classes of Cepheids: Type I Cepheids (δ Cepheus is a classical Cepheid) are population I
stars with high metallicities, and pulsation periods generally less than 10 days. Type II Cepheids (W Virginis stars), are
low-metallicity, population II stars, that are older, cooler, and redder, with pulsation periods between 10 and 100 days.
Hubble had used Population I Cepheid variable stars to determine distances to spiral nebulae. Hubble had made the
assumption that these Pop I Cepheid stars in distant spiral nebulae were similar to those observed in our galaxy. In fact,
the stars Hubble was using to estimate distances were systematically brighter than the nearer comparison stars. When this
was realized in the 1950s, thanks to Baade's work, Hubble's distances were doubled and Ho halved from 500 to 250.  

 Progress in astronomy is driven 
 by technological developments

 Charge-coupled devices (CCDs) were first used in astronomy in 1976 by Jim Janesick and Brad Smith. Compared
to photographics plates, they have better low-light performance, a wider (red) spectral range, and the ability to quickly
convert photons into electrons. Photographic plates saturate and cannot discriminate brightness like CCDs. GigaPixel
CCDs also improved the light gathering power of telescopes by nearly two orders of magnitude. These advances
revolutionized astronomy by facilitating immediate data analysis and enabling practical space-based observations. 

 The Hubble Space Telescope was launched in 1990, taken to space in the cargo bay of the space shuttle Discovery.
Its main purpose was to figure out a distance scale of the Universe (how big it is) and where the elements present in
space came from. HST was optimized for 0.1 to 2.5 µm region.

 The Planck Space Telescope 2009, was designed to study the Cosmic Microwave Background (CMB) at 3-160 µm.

 The Goal of the JWST (Launched in 2021) is to see high redshift galaxies to observe farther into the universe than
ever before.  To observe the Cosmic Dawn.   JWST Instruments capable of studying 0.6 to 28µm Infrared Region.
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 James Webb Space Telescope  (JWST) - Infrared Deep Field Survey
The James Webb Space Telescope (JWST) is the scientific successor to both the Hubble Space Telescope (HST) and the
Spitzer Space Telescope. It is envisioned as a facility-class mission. JWST aims to achieve science goals that can never be
reached from even the largest envisioned groundbased telescopes.  HST Optimized for 0.1 to 2.5 µm region.
It will be equipped with four instruments capable of studying the 0.6 to 28µm region using both imaging and spectroscopic
techniques. The instrument suite provides broad wavelength coverage and capabilities aimed at four key science themes: 

z = (λobs - λrest) / λrest Lyman-alpha break = 121 nm
1) The End of the Dark Ages: First Lig.ht and Reionization;  finding the light from the first objects to coalesce after the
Universe has cooled after the Big Bang
2) The Assembly of Galaxies;  how do galaxies change from first light objects to the suite of morphologies and galaxy

≲types that we see today. To unravel the birth and early evolution of star, from the earliest epochs  300 Myr after the Big
Bang, through the Epoch of Reionization. 
3) The Birth of Stars and Protoplanetary Systems; 
4) Planetary Systems and the Origins of Life. NIRCam is the 0.6 to 5 micron imager for JWST, and it is also the facility
wavefront sensor used to keep the primary mirror in alignment. JWST will work to unravel the birth and early evolution of
stars, from infall onto dust-enshrouded protostars to the genesis of planetary systems. The Hubble Space Telescope (HST)
has a highest resolution of about 0.03 arcseconds, while the Very Long Baseline Array (VLBA) makes images with a
resolution smaller than 0.001 arcsec. The JWST at located at Lagrange 2, has 6.5 m mirror, and a resolution of 0.1 arcsec.
  

 JWST Mid Infrared Instrument                  JWST Instruments
The JWST Mid-Infrared Instrument (MIRI) provides imaging and spectroscopic observing modes from ≈5 to 28μm.

 JWST Near Infrared Camera
The JWST Near Infrared Camera (NIRCam) offers imaging, coronagraphy, wide field slitless spectroscopy, and time-series
monitoring both in imaging and spectroscopy, as well as wavefront sensing measurements for JWST mirror alignment.
The JWSTprovides near-IR spectroscopy from 0.65.3 μm within a 3.4 ×3.6 arcmin field of view using a micro-shutter
assembly (MSA), an integral field unit (IFU), and fixed slits (FSs).

 JWST Near Infrared Imager and Slitless Spectrograph
The JWST Near Infrared Imager and Slitless Spectrograph ( NIRISS) provides observing modes for slitless spectroscopy,
high-contrast interferometric imaging, and imaging, at wavelengths between 0.6 and 5.0 μm over a 2.2' x 2.2' FOV.

 JWST Near Infrared Spectrograph
The JWST Near Infrared Spectrograph (NIRSpec) provides near-IR spectroscopy from 0.6–5.3 μm within a 3.4 × 3.6
arcmin field of view using a micro-shutter assembly (MSA), an integral field unit (IFU), and fixed slits (FSs).

 NIRISS pupil and filter wheels

 JADES: JWST Advanced Deep Extragalactic Survey Near-IR Spectroscopy Optics
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 JADES: Lookback Time versus Red Shift and Age of Univ z = 14.3 Gyr

Look-Back Time & Age of Unuv vs. z. 2024 Metal-Poor JADES-GS-z14-0 galaxy @z=14.3, Age: 290 million years

 The Value of the Cosmological Constant , John D. Barrow, 2018

"If you neglect the energy density of radiation and consider that the universe is currently flat,
the following formula is derived from the Friedmann equation:" 

H0 71
km

s Mpc
:=

ΩΛ0 0.73:=

The subindices mean current values for the Hubble parameter (= 71 Km /s Mpc), Omega matter (= 0.27),
Omega cosmological constant (= 0.73). To get the age at a given redshift z, you have to integrate from 
a = 0, to a = 1/(1+z).

The fraction of the effective mass of the universe attributed to "dark energy" or the cosmological constant is   
ΩΛ0  With 73% of the influence on the expansion of the universe in this era, the dark energy is viewed as the

dominant influence on that expansion.

We assume that the matter source of the FLRW universe is a perfect fluid with
energy density ρ and pressure P related by the barotropic, linear, and constant
equation of state     P = wρ, w = const.

z
λobserved λexpected-

λexpected
=

 Values of Some Constants

Lyr 1yr c:= Lyr 9.461 10
15

 m= Mpc 3.086 10
6

 Lyr:= Gyr 10
9
yr:= w 0.1 1..:=

Note: tL(z) factor should 

be 3/2. Used 1.45 
to get a better match. 

t0 w( )
2 H0

1-

3 w 1+( ) ΩΛ0
ln

1 ΩΛ0+

1 ΩΛ0-







:=
tL z( )

3

2H0 1.45
1 1 z+( )

3

2
-

-







:=

 Some Results of J WST Advanced Deep Extragalactic Survey  - Lookback Time

 Age of Universe (tBB)  from from 2021 Lambda-CDM concordance Model (Billion Years)

tBB 13.737:= BigBang tBB:=

 Furthest Observations of 2023 Metal-Poor JADES-GS-z14-0 galaxy @z=14.2, 290 Million Years Old

(Refer to Section VIII for Derivation of Lookback Time)

tlb z( ) tBB tL_tH0 z 0.3, 0.7, 10
10-

, ( ):= tage z( ) tBB t_tH0 z 0.3, 0.7, 10
10-

, ( ) 1000:=

Furthest_z 14.3:=
1

H0
13.39 Gyr=

z
j

j:=
j

 w: Ratio P/ρ for a fluid

j 0 0.01, 20..:=
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 Initial Galaxy Census from JWST 2023 (See Section X - IMF)
 The study of galaxies at the highest redshifts is crucial to unveiling the earliest stages of galaxy formation and evolution

 References: The abundance of z  10 galaxy candidates in the HUDF using deep JWST NIRCam
medium­band imaging, Donnan et al 2023,    Perez-Gonzalez et al. 2023 

 Read Data from JWT Observations: 
Donnan est al 2023, Harikane et al 2022, McLeod et al 2016, Oesch et al 2018, Perez-Gonzalez et al. 2023
Bouwens et al. 2022

 Similar Graph, ρUV  ∼The Dearth of z  10 Galaxies in All HST Legacy Fields — The Rapid Evolution of the

Galaxy Population in the First 500 Myr,  Oesch, The Astrophysical Journal, 855:105 ( 12pp ) , 2018 March 

DatρUV READPRN "Luminosity density Galaxies per Volume vs z.txt"( ):=  Model Curve to UV Luminosity ρ

ρUV DatρUV
1 

:= zfit DatρUV
0  17

16.5
:= fit z( ) log 1 z+( ) 4.2-  29.5+:=

 Redshift Evolution of the UV Luminosity density, ρuv  and Inferred Cosmic Star-Formation Rate Density,  ρSFR

log10(ρuv/ergs s-1 Hz-1 Mpc-3)  vs. Redshift, z  Initialize Second Unit Scale 

ρSFR 1:=
UV Luminosity Density, ρUV
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Fit 1 

fit z( )
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zfit Fit 0 
, z, 

fit(z) = log(.....)

Fit to Points  

The galaxy with the highest known redshift
2023 (and hence, the earliest formed) is
now JADES-GS-z13-0 at redshift 13.20,
400 million years after the Big Bang
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 Look-back Time by Redshift and Age of Universe
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BigBang

tL z( )
10

9
yr

tlb z( )
tage z( )

Furthest_z

z

   The Hubble Time is 1/H 0  = 13.0 GYr

z:  (observed λ - expected λ)/expected λ 

 The mass-to-light ratios and the star formation histories of Disc Galaxies
 The main sequence for high- and low-mass

  star-forming galaxies.
 Star Formation Rate,  SFR,  is the rate at which gas and

dust is turned into stars. It is the total mass of stars
formed per year. The term can be used in describing a

galaxy or globular cluster .       Data: 2017
  
The data sets from Cook et al. (the solid symbols) and
LSB + SPARC (the starred symbols) are shown, colour
coded by FUV–NUV color. 
The  green line is a fit to the LSB + SPARC sample
(McGaugh, Schombert & Lelli 2017). 
The  dashed line is the line of constant star formation for a
13ௗGyr Universe. 
There is a clear trend for blue FUV −NUV colors to lie
above the constant SFR line (rising SFR in the last 100
Myr) versus red FUV −NUV color's below the line
(declining SFH).
 The $z$ = 0 relationship from Speagle et al. is shown for
the high-mass spirals, along with 3σboundaries. 
Also shown are the values for SFR that correspond to an
Orion-sized complex, a single O star and a single B star. 

 SFR estimates below −4.5 are highly inaccurate. 
A representative error is shown in the upper left, errors in
SFR and stellar mass are from McGaugh, Schombert(2017).

 https://doi.org/10.1093/mnras/sty3223
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 XXV. Mathematica CMBquick: Simulation of CMB Temperature Power Spectrum

 WMAP Temperature Power Spectrum (TT) vs Multipole Moment Modeling

This Analysis is Based on Cyril Pitrou's Mathematica tools for creating CMB Spectra. 

 https://www2.iap.fr/users/pitrou/

"CMBquick is a package for Mathematica in which tools are provided to compute the spectrum and bispectrum of
Cosmic Microwave Background (CMB)... CMBquick is a slow but precise and pedagogical, tool which can be
used to explore and modify the physical content of the linear and non-linear dynamics. Second, its is a tool which
can help developing templates for nonlinear computations, which could then be hard coded once their correctness is
checked. The number of equations for non-linear dynamics is quite sizable and CMBquick makes it easy (but slow)
to manipulate the non-linear equations, to solve them precisely, and to plot them."  

 Below are the results of CMBquick Simulation to find the Temp Power Spectrum for WMAP

 Compare The Analysis Results Below to the Analysis from the Previous Section, XV

 WMAP Temperature Power Anistrophies Calculated from Mathematica (CMB   quick)

WMAP_CMB READPRN "CAMB_WMAP-CMBquick.dat"( ):=

WMAP_CMBq READPRN "wmap_CMBq.dat"( ):=

ΔTW WMAP_CMB
1 

:= MPMW WMAP_CMB
0 

:=

ΔTWq WMAP_CMBq
3 

:= MPMWq1 WMAP_CMBq
0 

:=
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 Angular Scale  °, Curvature, and Projection Effects on CMB
 The corresponding angle on the sky is approximately 100 /  l  degrees °

 The Curvature of the Universe is Indicated by the Location of the First CMB Peak
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ISW: Integrated Sachs-Wolfe Effect

 Projection Effects

 See Pages 9, 10 and 11 for Definitions

ρ0

3 H0
2

8 π G
= ρ0 8.6443584621592 10

27-


kg

m
3

:= ρcrit  = 1.879  10−29 h2 g cm−3.

ΩM
8πG ρ

3 H0
2

= ΩΛ
Λ c

2

3 H0
2

= Ω0 = 1 Radiation Transfer Function

Ω0

ρT

ρcrit
= ΩΛ

ρν
ρcrit

= Ω0 ΩΛ+ 1=  ρv is the vacuum contribution

Ω0  > 0.1 to 0.3 Ω0 0.15:= The Baryon Fraction is  Ωbh2 = 0.01 to 0.02 

 For the acoustic contributions , t he k modes that reach extrema in their oscillation at last scattering for m
a harmonic series of peaks related to the sound horizon. This in turn is approximately 

ηstar

1 C 1 R nstar( )+( )+ R nstar( ) 30Ωb h
2= C 3 1-:=

Since Ωbh2 must be low to satisfy nucleosynthesis constraints, the sound horizon will scale roughly as the particle

horizon . The particle horizon at last scattering itself scales as

ηstar Ω0 h
2





1

2
fR= fR 1 24Ω0 h

2





1-
+





 24Ω0 h

2-=

The mass is usually parameterized by Ω0 which is the energy density in units of the critical density 
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 CMBquick Cosmology CPLP Planck Perturbation Parameters
We compute the cosmology k dependent Boltzmann Hierarchy

 XXVI. Calculation of  CMB Power Spectra from Model Parameters - CAMB ToolVXPhysics 126



 XXVI. Calculation of  CMB Power Spectra from Model Parameters - CAMB Tool
Code for Anisotropies in the Microwave Background [CAMB].      

An Online CAMB Calculation Routine to calculate CMB_Model ΛCDM Model Parameters is available at:
 https://lambda.gsfc.nasa.gov/toolbox/camb_online.html

 Cosmological Model Parameters for Model Input
Ω_b h2             =  0.022600

Ω_c h2             =  0.112000

Ω_ν h2             =  0.000640
Ω_Lambda       =  0.724000
Ω_K                 =  0.000000
Ω_m (1-Ω_K-Ω_L)   =  0.276000
100 θ (CosmoMC)  =  1.039532
N_eff (total)        =  3.046000

1 η, g= 1.0153 m_nu*c2/k_B/T_nu0= 353.71 (m_nu=  0.060 eV)
Age of universe/GYr  =  13.777
z*                      =  1088.75
r_s(z*)/Mpc       =  146.38
100*θ                =  1.039819
zdrag                   =  1059.70

r_s(zdrag)/Mpc   =  149.01

k_D(z*) Mpc    =  0.1393
100*θ_D           =  0.160248
z_EQ (if v_nu=1)  =  3216.47
100*θ_EQ          =  0.847737
τ_recomb/Mpc    =  284.72  τ_now/Mpc =  14362.3

 Fake Model Params for Comparison
Ω_b h2            =  0.05

Ω_c h2            =  0.112000

Ω_ν h2             =  0.000640
Ω_Lambda       =  0.724000
Ω_K                 =  0.000000
Ω_m (1-Ω_K-Ω_L)   =  0.276000
100 θ (CosmoMC)  =  1.039532
N_eff (total)        =  3.046000

 Fake Model CMB Curve

CMB_ModelFake READPRN "Lensedcls-CMB Spectrum Om_b h2 050.txt"( ):=

ΔT2KFake CMB_ModelFake
1 

:=

MPMFake CMB_ModelFake
0 

:=

CMB_Model READPRN "Lensedcls-CMB Spectrum.txt"( ):= rows CMB_Model( ) 2099=

ΔT2K CMB_Model
1 

:= MultiPoleMoment CMB_Model
0 

:=

 Note:  The Excellent Match Between Data and the Model 
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 Use the Online CAMB Calculation Routine with Above CMB Parameters ==> ΛCDM Model
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           Calculation of CMB Power Spectra from Model Parameters
This Analysis was taken from Physical Foundations of Cosmology, V. Mukhanov, 2005

   

 C hapter 9: Cosmic microwave background anisotropies
After recombination, the primordial radiation freely streams through the universe without any further scattering. An
observer today detects the photons that last interacted with matter at redshift z ≈1000, far beyond the stars and galaxies.
The pattern of the angular temperature fluctuations gives us a direct snapshot of the distribution of radiation and energy at
the moment of recombination, which is representative of what the universe looked like when it was a thousand times
smaller and a hundred thousand times younger than today. The first striking feature is that the variations in intensity across
the sky are tiny, less than 0.01% on average. We can conclude from this that the universe was extremely homogeneous at
that time, in contrast to the lumpy, highly inhomogeneous distribution of matter seen today. The second striking feature is
that the average amplitude of the inhomogeneities is just what is required in a universe composed of Cold Dark Matter and
ordinary matter to explain the formation of galaxies and large-scale structure. Moreover, the temperature autocorrelation
function indicates that the inhomogeneities have statistical properties in perfect accordance with what is predicted by
hypothetical inflationary models.
  

The purpose of this chapter is to derive the spectrum of microwave background fluctuations, assuming a nearly
scale-invariant spectrum of primordial inhomogeneities, as occurs in inflationary models.  Correlation function and
multipoles  A sky map of the cosmic microwave background temperature fluctuations can be fully characterized in terms of
an infinite sequence of correlation functions. If the spectrum of fluctuations is Gaussian, as predicted by inflation and as
current data suggest, then only the even order correlation functions are nonzero and all of them can be directly expressed
through the two-point correlation function (also known as the temperature autocorrelation function):"

The temperature autocorrelation function is a detailed fingerprint that can be used first to discriminate among
cosmological models and then, once the model is fixed, to determine the values of its fundamental parameters.

 Multipole Moments Spectra tilt, ns

 9.7.4 Calculating the spectrum. We will now proceed to calculate the multipole spectrum ℓ(ℓ + 1) Cℓ,   Pξ(k) .

The ratio of the value of  ℓ(ℓ + 1) Cℓ for ℓ > 200 to its value for low multipole moments (the flat plateau) is

 The location scale factor, a(ζ,x,t), determines the volume rate of increase: 

k0 0.05Mpc
1-:=

a ζ x, t, ( ) a t( ) e
ζ x t, ( )

= Pξ k( ) A
k

k0









ns 1-( )
=

ns 1 0.35-:=

Pξ k0( ) 2.21 10
9-

:=

The contribution to the integrals O in (9.75) and (9.76) arises in the vicinity of the singular point x = 1.  N1 is the
nonoscillating contribution, N2 and N3 are Doppler contribution to the nonoscillating part of the spectrum. The 

result in the case of the concordance model ( Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04, Ωtot = 1 and H = 70 km s−1 Mpc−1)

is presented in the Figure below.                   

 Fundamental cosmological parameters. To calculate the known
history of the homogeneous Universe one needs (in addition to the
fundamental constants and the relevant Standard Model parameters)
five cosmological parameters. These can be chosen to be the ones
above, defined at the present epoch. To describe the inhomogeneity
one needs a and ns, which are shown above specify the spectrum

Pξ(k) and value A of the primordial curvature perturbation ζ. The

values of the parameters shown on the above page are chosen so
that the calculated CMB spectrum Cℓ agrees with measurements

made in the Planck spacecraft, and are taken from the Planck 2015
results. 
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 A Measurement of The Primordial Power Spectrum
 
The Atacama Cosmology Telescope, ACT: A Measurement of The Primordial Power Spectrum,
arXiv:1105.4887v1, Renee Hlozek, Joanna Dunkley1,2,3, Graeme Addison, John William Appe, October 10, 2018
     

 Below is the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of
the ACT. The angular resolution of ACT provides sensitivity to scales beyond   = 1000 for resolution of multiple

peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of

adiabatic scalar perturbations with wavenumbers up to k ≈ 0.2 Mpc−1. We find no evidence for deviation from
power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power
spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the
overlap of the matter power inferred from CMB measurements (which probe the power spectrum in the linear regime)
with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power.
This highlights the range of scales probed by current measurements of the matter power spectrum.

 Matter Distribution

Transforming from units of power
spectrum to mass variance

ΔM/M =  [P(k)k3/(2π2)]1/2,  

allows one to visualize directly the
relationship between mass scale
and variance.  While ΔM/M ≈ 1

for 106 M⊙ galaxies, the variance

decreases as the mass increases
and we probe the largest scales,
covering ten orders of magnitude
in the range of masses of the
corresponding probes.

The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data
(top panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT
ΛCDM model with spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data

points between 0.02 < k < 0.19 Mpc−1 show the SDSS DR7 LRG sample, and have been deconvolved from their
window functions, with a bias factor of 1.18 applied to the data. This has been rescaled from the Reid et al. (2010)
value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al. (2011) to make a change of

units from h−1Mpc to Mpc.  The constraints from CMB lensing (Das et al. 2011), from cluster measurements from
ACT, CCCP (Vikhlinin et al. 2009) and BCG halos, and the power spectrum constraints from measurements of the
Lyman–α forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass units
by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The above panel
shows the same data plotted on axes where we relate the power spectrum to a mass variance, ∆M/M, and illustrates

how the range in wavenumber k (measured in Mpc−1) corresponds to range in mass scale of over 10 orders of
magnitude. Note that large masses correspond to large scales and hence small values of k. This highlights the
consistency of power spectrum measurements by an array of cosmological probes over a large range of scales
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 XXVIIA. The Discovery of the Accelerating Universe (2011)

 Distance Modulus vs. Redshift for Type Ia Supernovae from the Supernova Cosmology Project  

Lawrence Berkeley National Laboratory Data:
The Supernova Cosmology Project, SCP

Data from:  https://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt

SCP READPRN "SCPUnion mu vs z. Data Only.txt"( ):= SCP csort SCP 0, ( ):=

zmu SCP
0 

:= Mmu SCP
1 

:= vg 1 1 1( )T:= rows SCP( ) 580=

 F it a Logfit Function and a Straight Line to Magnitude vs. Redshift Data

ab logfit zmu Mmu, vg, ( ):= M z( ) ab
0

ln z ab
1

+( ) ab
2

+:=

ba line log zmu( ) Mmu, ( ):= Mline z( ) ba
0

ba
1

log z( )+:=

Diff z( ) M z( ) Mline z( )-:=
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Hubble Diagram: Supernova Type 1a Measurement - Distance Modulus vs. z
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 Find the Percent of z > 0.1 Supernovae  that are above the Regression Line, Mline

PercentAbove

478

579

n

if Mmun
Mline zmun( )- 0> 1, 0, 





=











1

100
:=

PercentAbove 64 %= This 64% shows that the Velocities of the High z Galaxies are statistically
increasing faster than the Hubble Constant. The Expansion is Accelerating.
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 XXVIIB .  The Discovery of the Accelerating Universe (1999)
 Ω AND Λ FROM 42 HIGH-REDSHIFT SUPERNOVAE, Perlmutter et. al. (1999)

Named by Science magazine as the ‘Scientific Breakthrough of the Year"  for 1998. 

 The Supernova Cosmology Project, SCP

Attempts to measure the deceleration parameter Λ were stymied for lack of high-redshift supernovae. The
Supernova Cosmology Project was started in 1988 to address this problem. The primary goal of the project is the
determination of the cosmological parameters of the universe using the magnitude-redshift relation of type Ia supernovae.
The Project developed techniques, including instrumentation, analysis, and observing strategies, that make it possible to
systematically study high-redshift supernovae. As of 1998 March, more than 75 type Ia supernovae at redshifts
 z = 0.18 to 0.86 have been discovered and studied by the Supernova Cosmology Project. (Perlmutter et al.)

ZD READPRN "SCP SNE IA DATA - Perlmutter Data Only.txt"( ):= rows ZD( ) 42=

zd READPRN "CALA N-TOLOLO SNE IA DATA.txt"( ):=
rows zd( ) 18=

 Merge Data Files: ZD stack zd ZD, ( ):= ZD csort ZD 0, ( ):=

 F it a Logfit Function and Straight Line to Magnitude vs. Redshift Data

zz ZD
0 

:= max zz( ) 0.83= mpk ZD
2 

:= max mpk( ) 23.73=

ab logfit zz mpk, vg, ( ):= M z( ) ab
0

ln z ab
1

+( ) ab
2

+:=

ba line log zz( ) mpk, ( ):= Mline z( ) ba
0

ba
1

log z( )+:= ba
1

4.803=
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Hubble Diagram:  Supernova Type 1a Measurement - Effective Magnitude vs. Redshift (z)
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 Perlmutter (Hi-z) Plus Calan Tololo (z < 0.1) Data Set

 Find the Percent of z > 0.1 Supernovae  that are above the Regression Line, Mline

PercentAboveMean

30

59

n

if mpkn
Mline zzn( )- 0> 1, 0, 





=











1

30
:=

PercentAboveMean 56.667 %= This shows that the Velocities of the High z Galaxies are statistically increasing
faster than the mean Hubble Constant. The Expansion is Accelerating.
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 XXVIIC.  The 5 Year Dark Energy Survey and its Supernovae - 2024

 Refer to the Article:
The Dark Energy Survey (DES): Cosmology Results With ≈1500 New High-redshift Type Ia Supernovae
Using The Full 5-year Dataset    January 9, 2024     https://arxiv.org/abs/2401.02929          

 https://skyandtelescope.org/astronomy-news/cosmology/how-strong-is-dark-energy-intriguing-findings-from-n
 ew-supernova-catalog/

We have known for nearly 100 years that the universe is expanding. But only at the turn of the 21st century did
astronomers discover that the expansion was actually speeding up. 
Now, this new study suggests  that this phenomenon might be weaker than we thought.

 The Previous value for Λ was 69%.  This DES Study gives Λ = 65%. See Plot Below.

 The largest sample of Type Ia supernovae ever made by a single telescope sheds light on dark energy.

The Dark Energy Survey (DES) was conceived to characterize the properties of dark matter and dark energy with
unprecedented precision and accuracy through four primary observational probes (The Dark Energy Survey
Collaboration 2005; Bernstein et al. 2012; Dark Energy Survey Collaboration 2016; Lahav et al.2020). 
An example of a supernova discovered by the Dark Energy Survey (DES) within the field covered by one of the
individual detectors in the Dark Energy Camera. The supernova exploded in a spiral galaxy with redshift = 0.04528,
which corresponds to a light-travel time of about 0.6 billion years. This is one of the nearest supernovae in the sample.
In the inset, the supernova is a small dot at the upper-right of the bright galaxy center. DES collaboration

During a five-year survey, astronomers used a special camera mounted on the Víctor M. Blanco 4-meter Telescope
at Cerro Tololo Inter-American Observatory to discover 1,635 Type Ia supernovae from hundreds of different
galaxies spread over a huge range of distances. The light from these supernovae is anywhere between 1 billion and 9
billion years old. Using the aforementioned standard-candle technique, the team calculated the universe’s expansion
rate — and established the first good constraints on dark energy.
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 XXVIID.  Compare the Theoretical Magnitude-Redshift to Perlmutter 1999 SB 1A

 Theoretical Apparent Magnitude-Redshift Relation (Mukhanov)  
Physical Foundations of Cosmology,   Mukhanov, Equations 2.78 and 2.81  

Φ2 χem( ) =χem z Ωm, ( )

0

z

zξ
1

Ωm 1 zξ+( )3 1 Ωm-( )+







d:=

 Note: For k = 0  Then the Theoretical Bolometric Magnitude for k = 0 is Given by:

Φ χem( ) χem= mbol z Ωm, ( ) 5 log 1 z+( ) 5 log χem z Ωm, ( )( )+ 24+:=

j 0 300..:= zj 10
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 XXVIII. Lookback Time versus Red Shift and Reconstruction of High Z
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        The Plot shows that for z > 10, 
z contributes little to the age of the universe

tBB 13.8Gyr:= tBB tL_tH0 10 0.3, 0.7, 10
10-

, ( ) 12.844 Gyr=

 Evolution of the Hubble Factor:  Mass Conservation of non-relativistic matter implies ρm∝  a−3 = (1 + z)3 . 

In the ΛCDM model, dark energy is assumed to behave like a cosmological constant: ρΛ∝  a0 = (1 + z)0 . 

The density of radiation (and massless neutrinos) scales as ρr∝  a−4 = (1 + z)4  because the number density 

∝of photons is  a−3 = (1 + z)3 and the mass E/c2 = hν/c2 ∝ of each photon scales as E  λ−1 ∝  (1 + z)1 ∝  a−1.    

Ωr0 8.7 10
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 Reconstruction of the Cosmic Equation of State for High Redshift (z = 2 to 5)
 Refer to:  A. M. Velasquez-Toribio, M. M. Machado & Julio C. Fabris, European Physical Journal, Vol 79, 2018  

The accelerated expansion of the universe is one of the biggest problems of cosmology today. Among the different
cosmological observables, the cosmic equation of state (EoS) is of fundamental importance, as it carries the
kinematic and dynamic information of a given cosmological model. The reconstruction of these observables has been
widely considered in the literature using different types of cosmological data, such as the following: Supernovae Ia,
cosmic background radiation, clusters of galaxies, baryon acoustic oscillations (BAO), Hubble parameter data, f σ8,

and so on. Nevertheless, the reconstruction of this observable has not been considered for high redshift, in
principle, due to the lack of data for any redshift greater than 2.0. However, this question is currently changing
and we can consider the reconstruction of the EoS (w(z)) for high redshifts. Understanding in detail how w(z)
evolves as a function of time is fundamental to know the nature of dark energy.

DL = (1 + z)Dc

where h (z,θ) is the dimensionless Hubble parameter, H(z)/H0.  In our case, it is given explicitly by Friedmann Equation

 Function of 
w(z)

where Ωm0 and Ωk represent the matter density parameter and curvature respectively. In this paper, we assume

that Ωk = 0, which matches the results of the Planck satellite. To derive from the previous equation, an expression

for EoS, is useful. The definition 
DL = (1 + z)Dc

where we have included the term curvature. We can use this equation above together with the equation of h(z) to
 derive the equation of state  w(z)  as a function of   D c   and its derivatives .  DL(z)  can be inverted to Find  w(z) :

 Derivation w(z) from DL 
arxiv.org/abs/0807.4304v1

arxiv/astro-ph/0702670

where Dc' and Dc'' are the derivatives of Dc with respect to z. The ΛCDM Model for h, hΛCDM z( )  is:

hΛCDM z( ) Ωm0 1 z+( )3 Ωr0 1 z+( )4+ ΩΛ0+:= hG z( ) 3
8.3 3-

3
z 2-( )









+:=
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hG z.( )
hΛCDM z( )

z. z, 
N. Aghanim et al. [Planck Collaboration]. arXiv:1807.06209
P.A.R. Ade, et al. [Planck Collaboration], A&A 594, A13 (2016)

A. Sandage, Astrophys. J. 136, 319 (1962)
Parameter estimation with Sandage-Loeb test, arxiv1407.7123

We use two methods to reconstruct the EoS: the first method makes use of distance measurements from Gamma-Ray
Bursts (GRBs) & the second uses simulated data of the Hubble parameter generated by Sandage–Loeb (SL) effect. 
Sandage-Loeb (SL) test method directly measures the expansion history of the universe in the “z desert” of 2 < z < 5.
 In this paper we reconstruct  w(z)  using two model-independent approaches the comoving distance is related to
the luminosity distance by the relation: DL = (1 + z)Dc, and the comoving distance as a function of the Hubble

parameter is defined by the following expression:

Below plots shows the simulated data using the Sandage–Loeb effect and reconstructed h(z) (hG) using a Gaussian process. 
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 XXIX.  Early Universe Models: Quark-Gluon Plasma
 Refer to Section  IIC.  Hypothetical and Observable Thermal Sequence for the ΛCDM Theory

Energy density ε(T) and Pressure P(T) normalized by T4 
as a function of temperature (T). Nt is the number 

of lattice points in the temporal direction. The
Stefan-Boltzmann (SB) limits are indicated by arrows. 

Temperature history of the universe. 

The phase diagram (pressure vs temperature) of water below shows three broad regions separated by phase transition
lines, the triple point where all three phases coexist, and the critical point where the vapour pressure curve terminates
and two distinct coexisting phases, namely liquid and gas, become identical. The QCD phase diagram is known only
schematically, except for the lattice QCD predictions at vanishing or small µB , in particular the prediction of a crossover
transition around T ~ 150-170 MeV for vanishing Baryon Chemcial potential µB.

Note that both energy density (ε) and pressure (P) 
rise rapidly around T = 160 MeV,

Phase diagram of Water QCD phase diagram.

Quark–Gluon  plasma  (QGP  or  quark  soup)  is  a state of matter of Quantum Chromodynamics (QCD) of an
interacting  localized  assembly  of  quarks  and  gluons  at thermal  (local  kinetic)  and  (close  to)  chemical
(abundance) equilibrium. The word plasma signals that free color charges are allowed.  It can be said that QGP emerges
to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics
of  practically  massless  gluons  and  quarks.  Both  quarks  and  gluons  must  be  present  in conditions near chemical
(yield) equilibrium with their color charge open for a new state of matter to be referred to as QGP. 
In the Big Bang theory, quark–gluon plasma filled the entire Universe before matter as we know it was created.
Quark–gluon plasma is a state of matter in which the elementary particles that make up the hadrons of baryonic  matter
are  freed  of  their Strong Force attraction (deconfinment)  for  one  another  under  extremely  high  energy densities.

  P(T)/T4 CERN–2014–001,KEK Proceedings 2013–8, 17 March 2014                                 
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 Early Universe Models:   Nucelosynthesis - Metallicity - Population III Stars
 Modeling Hydrogen Orbitals ( We will use the  Maple Programming Language  for Model )

 Maple Plots:
The square of the absolute value can

be plotted in the same way as the
spherical harmonic at the left. 

The colors now show phases other
than 0 and π.
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   Nucelosynthesis in the Early Universe: Ratio of Neutrons to Protons 

 Introduction to Cosomology , Ryden
"The basic building blocks for nucleosynthesis are neutrons and protons. As the Universe cools, protons and neutrons
become stable particles and they, in turn, bind into nuclei. With a decay time of only fifteen minutes, the existence of a
free neutron is as fleeting as fame; once the universe was several hours old, it contained essentially no free neutrons.
However, a neutron which is bound into a stable atomic nucleus is preserved against decay. There are still neutrons
around today, because they’ve been tied up in deuterium, helium, and other atoms.

The Boltzmann distribution for the number density of nonrelativistic nuclei of atomic weight A is: n A ≈ T3/2 e(µ A- m A)/k.  

Given the masses of the particles in Mega Electron Volts (MeV), the number density for neutrons and protons is:"

MeV 1.60218 10
13-

 J:= mn 939.565420MeV:= mp 938.272088MeV:= mn mp- 1.293 MeV=

nn gn
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Since the statistical weights of protons and neutrons are equal, 
with  gp  =  gn = 2, 

the neutron-to-proton ratio is then given by the equation: 
Ration_p T( )
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e
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2
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

:=

These reactions continued until the decreasing temperature and density caused the reactions to become too slow,
which occurred at about T = 0.7 MeV (time around 1 second) and is called the freeze out temperature.

 Freeze Out Temperature in Kelvin, K  Ratio of Neutrons to Protons in Early Universe

TFreeze_Out
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 Abundance of the light elements over time

 The star-formation rate in the Universe is a function of redshift, which is itself a function of cosmic time. The
overall rate, (left) is derived from both ultraviolet and infrared observations, and is remarkably consistent across
time and space. Note that star formation, today, is only a few percent of what it was at its peak (between 3-5%),
and that the majority of stars were formed in the first ~5 billion years of our cosmic history. Only about ~15%
of all stars, at maximum, have formed over the past 4.6 billion years, with the cumulative history of star-formation
transforming about 1% of all atoms, by mass, into oxygen.    Credit: P. Madau & M. Dickinson, 2014, ARAA

 This plot shows the abundance of the light elements over time , as the Universe expands and cools
during the various phases of Big Bang Nucleosynthesis. By the time the first stars form, the initial ratios of
hydrogen, deuterium, helium-3, helium-4, and lithium-7 are all fixed by these early nuclear processes.
Credit: M. Pospelov & J. Pradler, Annual Review of Nuclear and Particle Science, 2010
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 Metallicity - Population III Stars - JWST

 Definition of Metallicity, Z:  
The relative abundances of the chemical elements can be measured in a number of astronomical objects, in particular
using spectroscopic techniques. The observed strengths of spectral lines depend on a variety of factors among
which are the chemical abundances of the elements producing those spectral lines.  
It is convenient to define the fractions by mass of hydrogen X, of helium Y, and of heavy elements Z. 
Therefore, Z = (mass of heavy elements)/(total mass of all nuclei). in some object, objects or region of space. We
therefore have X + Y + Z ≡ 1.  

The most recent determination of the solar Z(Z⊙) gives a value of 0.0134.

  A very small fraction of metals is sufficient to alter the behavior of the star completely. 
The more metallic a star, the more opaque it is (since metals absorb radiation), and how opaque it is, in turn, relate to its
size, temperature, brightness, life span, and other key properties. Metallicity basically also tells you how the star will die.

 Population III Stars
The advancement of observational technologies has brought increasing attention to the study of the first galaxies, black
holes, and stars in the early universe. Detection of population III stars is a goal of NASA's James Webb Space
Telescope.  Among its many grand discoveries set to come, perhaps the greatest of all is the possibility of observing the
light from the very first stars in the Universe. These chemically pristine, so-called ‘Population III’ stars, formed out
of the primordial hydrogen and helium (and trace amounts of lithium), and were the first embers to ignite, producers of
the starlight that ended the cosmic dark ages and paved the way for cosmic dawn. 

Sirius is the star with the highest known metallicity of 0.5, which corresponds to a Fe to H ratio of three times the sun.
The search of Population III stars with JWST is actively ongoing.  The search is for strongly-lensed extremely

metal-poor small mass star clusters of 104 M⊙ ∼ and with Z  10−3 Z⊙.  

 The Simple Model of Galactic Chemical Evolution
Mtotal = Mstars + Mgas  Therefore the heavy element mass fraction of the gas is

Let the change in Mstars and Mgas in this time be δMstars and δM gas . 

We firstly need to express the change δZ in the metallicity of the interstellar gas in terms of δMstars and δMg

We need to distinguish between the the total mass in stars Mstars at time t and the total mass that has taken part in

star formation MSF over all periods up to time t. When a mass δMSF goes into stars during star formation, the total

mass in stars will change by amount less than this, because material from the new stars is ejected back into the
interstellar gas. So, δMSF > δMstars, and MSF > Mstars .

Let α be the fraction of mass participating in star formation that remains locked up in long-lived stars (and stellar
remnants). So, δMstars = α δMSF  (with 0 < α < 1)

The mass of newly synthesized heavy elements ejected back into the Interstellar Medium, ISM, is proportional to the
mass that goes into stars (from the Simple Model assumptions listed above). Let the mass of newly synthesized
heavy elements ejected into the ISM be equal to   p δ Mstars , where p is a parameter known as the yield, with p set

to be a constant here. This gives
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Since the Mgas(0) = M total(t) (a constant) for all t (because we have a closed box that initially contained only gas),

we can rewrite this equation using the gas fraction µ ≡ Mgas(t)/Mtotal(t) as Z(t) = − p ln µ 

which rearramges to

This is a prediction of how the fraction of the mass of the volume that is in stars varies with metallicity. 
Mstars(t)/Mgas(0) increases from zero at time t = 0, and can become very large if most of the gas is used up in star

formation.  Today, at time t1 , we have a metallicity Z1 and a mass in stars Mstars1 . Therefore we have

where N1 is the value of N(Z) today.

 This gives a specific prediction of the number of stars as a function of metallicity

The figure below gives a comparison of the the predicted metallicity distribution from Equation N(Z) with observations
of long-lived stars in the solar neighbourhood. The Simple Model prediction is found to be very different to the
observed distribution. 

 The Simple Model predicts a far larger proportion of  Metal-Poor Stars  than are actuall found. 
 This has become known as the G dwarf problem.

p 0.010:= Z1 0.017:= NN1 Z( )
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 The observed iron abundance, [Fe/H], is often regarded as a proxy for the total metallicity, Z,  of stars.
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 Cumulative Metallicity Distribution

The observed Cumulative Metallicity distribution for stars in the solar neighbourhood, 
compared with the Simple Model prediction for p = 0.010 and Z1 = Z⊙ = 0.017.

 [The observed distribution uses data from Kotoneva et al.,M.R.AS, 336, 879, 2002, for stars in the Hipparcos Catalog.]
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 Population III Stars Metallicity- JWST -  Continued

 JADES-GS-z14-0  Atacama Large Millimeter/submillimeter Array (ALMA),  found an emission line of oxygen, 
making this the most distant detection of oxygen, when the Universe was slightly under a mere 300 million years old.     
Detection of [OIII] 88µm in JADES­GS­z14­0 at z=14.1793,  S. Schouws et. all, March 17, 2025,  www.eso.org/public/

Under current cosmological models, all matter created in the Big Bang was mostly hydrogen (75%) and helium (25%),
with only a very tiny fraction consisting of other light elements such as lithium and beryllium. 
  

When the universe had cooled sufficiently, the first stars were born as population III stars, without any contaminating
heavier metals. This is postulated to have affected their structure so that their stellar masses became hundreds of times
more than that of the Sun. In turn, these massive stars also evolved very quickly, and their nucleosynthetic processes
created the first 26 elements (up to iron in the periodic table). Many theoretical stellar models show that most high-mass
population III stars rapidly exhausted their fuel and likely exploded in extremely energetic pair-instability supernovae.
The oldest stars observed thus far, known as population II, have very low metallicities; as subsequent generations of
stars were born, they became more metal-enriched, as the gaseous clouds from which they formed received the
metal-rich dust manufactured by previous generations of stars from population III.
As those population II stars died, they returned metal-enriched material to the interstellar medium via planetary nebulae
and supernovae, enriching further the nebulae, out of which the newer stars formed. 
   

These youngest stars, including the Sun, therefore have the highest metal content, known as population I stars.
  

 Required JWST Instrumentation

∼Requires ultradeep exposures would be needed to detect  105 ⊙ M  Pop III galaxies at z = 10, with color–colour
selections combining JWST/NIR Cam and JWST/MIRI photometry enabling a clean selection of Pop III galaxies 
at z ≈ 7–8. Fortuitous gravitational Lansing of Pop III galaxies will greatly relax the otherwise demanding integration times
needed.
See Section XXIV:  Advances in Measurement and Technology for Measuring Hubble Constant
    

 Some Possible Explanations
Any one or combination of these proposed explanations appears feasible: (1) a higher star formation efficiency at that
time; (2) a higher percentage of very massive stars at that time; (3) a reduced quantity of dust or the presence of dust with
a less dimming effect; and (4) adjustments to our understanding of the properties of dark matter haloes at that time.
Spectroscopic follow-up studies for the observed galaxy candidates are ongoing. As research continues, the list of 90
ultrabright galaxies initially thought to have formed early in the cosmic dawn will likely be reduced.

 Contrary to Expectations: Metallicity and Mass
JWST found young stars that are hotter and with high metallicity.  Some where found with nickel, which is heavier than
iron in the periodic table.  This came as somewhat of a surprise. The JWST observation of the galaxy  JADES-GS-z14-0
at redshift z=14.32, which is the most distant galaxy observed, shows surprisingly high metal enrichment 
( ⊙ Z ~ 0.05 - 0.2 Z ), indicating a rapid assembly of metals in the early universe and it started galaxy formation very early.

It is 325 to 330 million years old (2.1% of Universe Age.) It is also far more massive than expected, M ~ 500 106 M⊙.
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The differences in the number of galaxies with opposite directions of rotations in different parts of the sky as

determined by using 1.3 × 106 galaxies imaged by the DESI Legacy Survey (Shamir 2022e). 
The location of the GOODS-S field is at a part of the sky with a higher number of galaxies rotating clockwise.

Redshift z cw ccw    cw/cw+ccw p-value
0    -  0.05 3216 3180 0.5003 0.698
0.05 - 0.1 6240 6270 0.498 0.4
0.1  - 0.15 4236 4273 0.496 0.285
0.15 - 0.2 1586 1716 0.479  0.008
0.2   - 0.5 2598 2952 0.469 1.07 × 10−6

Total 17876 18391 0.493 0.0034

 As the above table shows, the asymmetry increases as the redshift gets higher.
    

The distribution of galaxies rotating clockwise and counterclockwise imaged by SDSS. All galaxies are within

the RA range of (120◦, 210◦). The p-values are the binomial distribution p-value to have such asymmetry or
stronger by chance. The table is taken from Shamir (2020)   springer.com/article/10.1007/s10509-020-03850-1

 Distribution of Galaxy Rotation in JWST Advanced Deep Extragalactic Survey
The distribution of galaxy rotation in JWST Advanced Deep Extragalactic Survey,   Lior Shamir, 
MNRAS 538, 76–91 (2025)         https://doi.org/10.1093/mnras/staf292

 Analysis of spiral galaxies by their direction of rotation in JADES 
∼shows that the number of galaxies in that field that rotate in the opposite direction relative to the Milky Way galaxy is 

50 per cent higher than the number of galaxies that rotate in the same direction relative to the Milky Way. The analysis is
done using a computer-aided quantitative method, but the difference is so extreme that it can be noticed and inspected
even by the unaided human eye. These observations are in excellent agreement with deep fields taken at around the
same footprint by Hubble Space Telescope and JWST.
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 XXX. Some Key Problems of the ΛCDM Cosmology
Challenges for ΛCDM: An update, L. Perivolaropoulos and F. Skara, 2022
A Candid Assessment of Standard Cosmology, Fulvio Melia, 2022
https://en.wikipedia.org/wiki/Lambda-CDM_model#cite_note-Planck_2018-19

The standard  Hot  Big  Bang  model,  in  which  the  early  universe  was  radiation- dominated, is not without its
flaws. In particular, after the discovery of the cosmic  microwave  background  led  to  the  widespread  embrace  of
the  Big Bang,  it  was  realized  that  the  standard  Hot  Big  Bang  scenario  had  three underlying  problems.  

1. XXX. The flatness problem: why is the universe so close to being flat today?
               The universe is nearly flat today,  and was even flatter in the past?  

  Λ-CDM Model Parameters to see the Fine Tuning for Ω k  ≈ 0.

Ω.Λ 0.6842:= Ωm 0.3158:= Ωk 1 Ω.Λ- Ωm-:= Ωk 0=

2.  The horizon problem: 
             How comes the CMBR is so uniform?
             “The universe  is  nearly  isotropic  and homogeneous  today,  and  was  even  more  so  in  the  past?
3.  Absence of Topological Defects - The monopole problem: 
          where are the copious amounts of magnetic monopoles predicted to exist in the BB cosmology?
4.  Early Structure Formation - Premature formation of Galaxies. High Metallicity.
5.  Low Entropy   -  The Second Law of Thermodynamics
6.  Discrepancy Between Theoretically Estimated and Actual Value of Λ
7.  Hubble Tension - Difference between Global and Local Determined Values of H0

8.  Early Appearance of Super Massive Black Holes
9.  Violations of Cosmological Principle: Isotropy, Homogeneity, and KBC Void 
10. Cosmological Lithium Problem: Observable Lithium less than calculated Λ-CDM Model by Factor of 3-4.
11. Early Universe High Redshift Galaxies: JWST sees galaxies JADES-GS-z14-0 at redshift of 14.32        
12. Unfalsifiability: ΛCDM model built upon foundation of conventionalist stratagems:  Not Popper Unfalsifiable.
13. Electroweak Horizon Problem - Higgs Particle-->Possible phase transition associated with Grand Unification Theories
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 XXXI. Three Analyses of the Flatness Problem - The Fine Tuning Problem
A.  An Introduction To Modern Cosmology,  Andrew Liddle
B.  A survey of dark matter and related topics in cosmology, Bing-Lin Young, Phys. 12(2), 121201 (2017),
C.  Astronomy 275 Lecture Notes,  Edward Wright:  Spring 2015,  Section 6.1

 What is the Flatness Problem? 

Recent measurements of the total density of the Universe find 0.95 <  Ωo < 1.05. This near  flatness is a problem
because the Friedmann Equation tells us that  Ω ≈ 1 is a very unstable condition - like a pencil balancing on its point. It
is a very special condition that won't stay there long. Here is an example of how special it is. We know  that 

                                                               (Ω-1 - 1) ρ R2 = constant. Therefore, we can write,

Ω 1- 1-( )ρ R
2 Ω0

1- 1-



ρ0 R0

2=

where the right hand side is today and the left hand side is at any arbitrary time. We then have,

Ω 1- 1-( ) Ω0
1- 1-




ρ0

ρ

R0

R









2

=

Ω 1- 1-( ) Ω0
1- 1-





1 z+
=

Inserting the current limits on the density of the Universe,  0.95 <  Ωo < 1.05 

(for which -0.05 <  (Ωo-1 -1) < 0.05), 
we get a constraint on the possible values that  could have had at redshift, z.

1

1
0.05

1 z+
+

Ω<
1

1
0.05

1 z+
-

< ΔΩ z ϕ, ( )
1

1
ϕ 0.05

1 z+
-

:=

At recombination (when the  first hydrogen atoms were formed) z≈ 103 and the constraint on Ω yields,

ΔΩ 1000 1-, ( ) 0.99995= <  Ω  < ΔΩ 1000 1, ( ) 1.00005=

So the observation that 0.95 <  Ωo < 1.05 today, means that at a redshift of z ≈ 103 we must have had 
0.99995 < Ω  < 1.000005. This range is small... special. However,  had to be even more special earlier on. We know
that the standard ΛCDM successfully predicts the relative abundances of the light nuclei during nucleosynthesis
between ≈ 1 minute and ≈ 3 minutes after the big bang, so let's consider the slightly earlier time, 1 second after the big
bang which is about the beginning of the epoch in which we are confident that the Friedmann Equation holds. The

redshift was z ≈ 1011 and the resulting constraint on the density at that time was,

ΔΩ 1 10
11

 1-, ( ) 0.9999999999995= <  Ω  < ΔΩ 1 10
11

 1, ( ) 1.0000000000005=

This range is even smaller and more special, (although we have assumed matter domination for this calculation, at

redshifts higher than zeq ≈ 3000, we have radiation domination and  ρ =  ρo(1 + z)4. This makes the 1 + z in the

equation a (1 + z)2 and requires that early values of  be even closer to 1 than calculated here).
To summarize:

redshift is related to the scale factor by R = Ro/(1 + z). Consider  the evolution during matter-domination where    

ρ  = ρo(1 + z)3.     Inserting these we get,
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 A.   An Introduction To Modern Cosmology,   Andrew Liddle
The flatness problem is the easiest one to understand. We have learned that the Universe possesses a total density of
material,Ωtot = Ω0 +ΩA, which is close to the critical density. Very conservatively, it is known to lie in the range

0.5 <  Ωtot < 1.5. In terms of geometry, that means that the Universe is quite close to possessing the flat (Euclidean)

geometry. We have seen that the Friedmann equation can be rewritten as an equation showing
how Ωtot varies with time. Adding modulus signs to the Friedmann Equation gives:

We know from this that this that Ωtot is precisely equal to one, then it remains so for all time. But what if it is not?

Let's consider the situation where we have a conventional Universe (matter or radiation dominated) where the normal
matter is more important than the curvature or cosmological constant term. Then we can use the solutions ignoring the
curvature term, using equations to find

In either case, the difference between Ωtot and 1 is an increasing function of time. That means that the flat geometry is an

unstable situation for the Universe; if there is any deviation from it then the Universe will very quickly become more and
more curved. Consequently, for the Universe to be so close to flat even at its large present age means that at very early
times it must have been extremely close to the flat geometry. 

An alternative way to see this is to remember that the densities of matter and radiation reduce with expansion as l/a3 and

l/a4 respectively. These are both faster reductions than the curvature term k/a2. So if the curvature term is not to totally
dominate in the present Universe, it must have begun much smaller than the other terms. 
The equations for |Ωtot -1| derived above stop being valid once the curvature or cosmological constant terms are no

longer negligible, since we used the a(t) solutions for the flat geometry to derive them. But they are fine to give us an
approximate idea of what the problem is. For extra ease let's assume that the Universe always has only radiation in it.
Using the equations above, we can ask how close to one the density parameter must have been at various early times,

based on the constraint today (to ≈ 4 x 1017 sec).

Written out in long hand, that means we know that at nucleosynthesis, an era we are supposed to understand very well
indeed, the density parameter must have lain within the range 0.999999999999999999  <  Ωtot  <

1.000000000000000001 !    Out of all the possible values that it might have had, this seems a very restrictive range. Any
other value would lead to a Universe extremely different to that which we see. 

The easiest way out of this dilemma is to suppose that the Universe must have precisely the critical density. But on the
face of it there seems no reason to prefer this choice over any other. What would be nice would be an explanation of
such a value. 
Regardless of whether or not we understand the physical origin of these numbers. they are an observed fact. One useful
thing they tell us is that the Universe is very close to spatial flatness at decoupling and at nucleosynthesis, which means
that it is always a good approximation to set k = 0 in the Friedmann equation when describing those phenomena.
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 B.   A survey of dark matter and related topics in cosmology

 Critical Density:
ρκ

3

8πGN

κc
2

ao
2

= DH
c

H0
:=

Ωcrit h( ) 7.5 10
21

 h
1-

M⊙ DH
3-:=

 C. Astronomy 275 Lecture Notes:   Edward Wright 
Edward Wright:  Spring 2015, Section 6.1.The Flatness-Oldness Figure 14 (https://astro.ucla.edu/≈wright/) 

The expanding universe evolves away from Ωtot = 1:  Note: See the Following Page for more details

 ΩkHR   Equation:

 This creates an enormous fine-tuning problem: 
                   the early universe must have been remarkably close to Ωtot = 1 in order to have Ωtot ≈ 1 today!

 Just 1 gm/cc out of 447*1021    gm/cc at 1 ns  is the difference between an expanding, flat, or closed universe.

  Phys. 12(2), 121201 (2017), Bing-Lin Young
 

We note that in the very early universe  radiation energy dominates. Then H2(z) ≈ (1 + z)4 which says

Ωk(z) ≈ (1 + z)­2 Ωk

This gives rise to the well-known flatness problem. For any finite value of the curvature parameter, i.e., any value of Ωk

at the present epoch, the curvature fraction to the effective total energy density is negligibly small at the early universe of
≫z  1. Running the argument in the reversed direction with Ωk ≈ (1 + z)2 Ωk(z),  we have 

a z2 growth in the curvature density fraction. 
From the fact that the observed matter-energy density today ρ0 is close to the critical density ρc , this requires a very

small curvature density fraction in the early universe. This gives raise to a fine tuning problem unless k = 0: Furthermore,
a finite curvature constant allows the determination of the scale factor at the present time, a0 , 

which is unphysical, from the equation
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 Fine Tuning - The Flatness Problem Details and Calculations

 Evaluating this in the Maple Programming Language to 62 digits gives:

 Astronomy 275 Lecture Notes, Edward Wright
https://astro.ucla.edu/~wright/A275.pdf 

 Refer to:   Section 6. Flatness

 For a Radiation-Dominated critical density Universe,  H0  = 1/(2*t)
Then: Ω 1- 1-

constant

ρ a
2

=
ρcrit t( )

3

32πG t
2

:=ρcrit
3 H

2

8 π G
= H

1

2t
= 1

H0
4.225 10

17
 s=  Thus to find the value of 

Density Parameter: Ω-1 - 1,
we need to 

calculate the density, ρ,
 during the Planck era.

 Planck Tim e tPl

hbar

mPl c
2

=
tPl hbar G c

5

2
-

:= tPl 5.39 s 10
44-

=

 Planck Density ρPl
3

32 π G tPl( )2
:= ρPl 1.54 10

95


kg

m
3

=  Stefan-Boltzmann Law : P = ε σ A T4

Digits := 62;
Ω0.95 := 1 + evalf(0.219*10^(-59));

Ω0.95 := 1.0000000000000000000000000000000000000000000000000000000000022
 

Ω1.05 := 1 - evalf(0.219*10^(-59));

Ω1.05 = 0.99999999999999999999999999999999999999999999999999999999999781

 Thus to get Ω◦ between 0.95 and 1.05 with h = 0.71 and g = 106.75 requires 61 digits of Fine Tuning.
  

                0.99999999999999999999999999999999999999999999999999999999999781 <  Ω  and      
       Ω <  1.0000000000000000000000000000000000000000000000000000000000022
  

The probability for Ω to randomly fall within this narrow window at the Planck Time is astronomically unlikely. 
Some unknown process must be at work for Ω to be so Finely Tuned.

u
gspin

2
a T0

4=

We can calculate the temperature from: ρ
a g

2c
2

T
4=

Tpl ≈ 1032 K

The Current value of s is so so 2890 kB
erg

K cm
3-

:=

The quantity needed to find ρR2 = ρ/(1 + z)2  
in order to find Ω − 1 is given by equation 102 
from Astronomy 275 Lecture Notes by Wright.

Ω 1- 1-
constant

ρ a
2

=
ρ

1 z+( )2
3.91

g









2

3 a g To
4 ρ

2c
2











1

2

=

 Calculate Ω required to  get Ω 0  (present density factor) between 0.95 and 1.05 with h = 0.71 and g = 106.75 

  Finally we get that  at the Planck time
     Equation 103 from Astronomy 275: Ω 1- 1- = Ωf Ω0( ) 8.7 10

59-
 Ω0 0.71

2
 Ω0

1- 1-



:=

 Then to get Ω 0  between 

 0.95 and 1.05  for Ω at Planck time
Ω 1- 1- =Ωf 0.95( ) 0.219 10

59-
= Ω 1- 1- = Ωf 1.05( ) 0.219- 10

59-
=

 Fine Tuning Analogy
The number 10-60 is, of course,
very tiny. To make an analogy,
in order to change the  Sun’s

mass by one part in 1060, you
would have to add or subtract
two electrons. Our very
existence depends on the
fanatically close balance
between the actual density and 
the critical density in the early
universe.

For the density at the Planck time this is     2.16 × 1029 gm/cc  if  gspin = 106.75.

But the current value of ρR2 is just      ρ0 =  Ω0 ρcrit = 1.8788 Ω0  h
2 × 10− 29

gm/cc,  Ω0 is the density parameter at present. 

s
4

3

g

2
 a T

4= 1 z+( )3 so=

 See Section VI for Energy Equation
Even in the general case with radiation, matter and 
vacuum densities, the energy equation is still

Current 
Energy Density:

 To find the redshift from Entropy Density, s .
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 2. The Cosmological Horizon Problem for the ΛCDM Theory

The universe appears to be homogeneous and isotropic on large scales. According to the COBE

measurements,the cosmic background radiation (CBR) is uniform to a part in 104 on large scales (from about
10 '' to 180 deg). Furthermore, the light element abundance measurements seem to indicate that the
observable universe (bounded by the last scattering surface) was homogeneous by the time of nucleosynthesis.
Hence, we would expect the observable universe today (time t0) to have been in causal contact by the

time of nucleosynthesis tn ; otherwise the initial conditions of the universe would have to be extremely fine

tuned in order for the causally disconnected patches to resemble one another as much as they do. However, in

a Friedmann Robertson Walker (FRW) universe (a metric of ds2 = dt2 - a(t)2 dx2) that is matter or radiation
dominated, upon naive extrapolation back to the singularity, one finds that there is a finite horizon length at the
time of nucleosynthesis. Distant regions of space in opposite directions of the sky are so far apart that,
assuming standard Big Bang expansion, they could never have been in causal contact with each other. This is
because  the light travel time between them exceeds the age of the universe.   
Hence, for the observable universe to have been in causal contact by the time of nucleosynthesis, the
comoving horizon length must have been larger than the comoving distance to the last scattering surface.
In other words, 

our observable universe today (when appropriately scaled back to the time of nucleosynthesis) 
 must have fit inside a causal region at the time of nucleosy nthesis.

    

                     The comoving size Lo of the observable universe today is 

where tdec is the time of the radiation decoupling and t0 is the time today (subscript 0 refers to today). 

                  The comoving size Ln of the horizon at the time of nucleosynthesis

 In order to explain causal contact of all points within our observable universe at the time of nucleosynthesis,
we require Lo < Ln . However, this condition is not met in a naive FRW cosmology with matter or radiation

domination. Even if we take tn to be the the time of last scattering of CBR and not the nucleosynthesis time,

we still have a horizon problem by a factor of 105 . In both matter or radiation domination cases, the
time dependence of the scalefactor is a power law with the index less than 1; in a dust (matter) dominated

universe,   a  t2/3  and in a radiation dominated universe, a   t1/2 . Hence, in the naive FRW
cosmology,  L0 ≈ t0/a0 and Ln ≈ tn /a(tn), such that Lo > Ln while causal connection requires  Lo < Ln.
  

 This is the horizon problem. 
The above XXXII Inflation solves the horizon problem by having a period of accelerated expansion, with

 (a period of time when the universe was not dust or radiation dominated).

 Can Geodesics in Extra Dimensions Solve the Cosmological Horizon Problem?  
Daniel J. H. Chung 1, arXiv:hep-ph/9910235v2  12 Oct 2000
There is a possible non-inflationary solution to the cosmological horizon problem in scenarios in which our observable
universe is confined to three spatial dimensions (a three-brane) embedded in a higher dimensional space. A signal
traveling along an extra-dimensional null geodesic may leave our three-brane, travel into the extra dimensions, and
subsequently return to a different place on our three-brane in a shorter time than the time a signal confined to our
three-brane would take. Hence, these geodesics may connect distant points which would otherwise be “outside” the
four dimensional horizon (points not in causal contact with one another).
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 2. The Horizon Problem  (See Section V)  Horizons in the Universe
A space-time diagram illustrating the cosmic

particle horizon, which defines the observable
universe. If we trace our past lightcone back

to the big bang, we find the most distant
worldline that was ever within our past
lightcone. The present distance to this

worldline marks the particle horizon limit.

 Consider matter-only universe: 
• Horizon distance dH(t) = 3ct 

• Scale factor a(t) = (t/t0) 2/3 

• Therefore horizon expands faster  than the universe, 
so new” objects  are constantly coming into view 
 

 Consider CMBR: 
• It decouples at 1+z ≈ 1100 

• i.e., tCMB = t0 /104.5 

• Then dH (tCMB ) = 3ct0 /10 4.5 

• Now this has expanded by a factor of 1000 to 3ct0 /101.5 

• But horizon distance now is 3ct0 

• So angle subtended on sky by one CMB horizon distance is only ≈ 2°

 CMBR is Uniform to ∆T/T ≈ 10-6

Yet the projected size of the particle horizon at the decoupling was  ≈ 2° -
 these regions were causally disconnected - so how come?

=> Patches of CMB sky  > 2° apart should not be causally connected!

 Some Key Problems of the ΛCDM Cosmology - Continued:
3. Origin of Structure
4. Absence of Topological Defects
5. Low Entropy - The Second Law of Thermodynamics
6. Discrepancy Between Theoretically Estimated and  Actual Value of Λ
7. The Hubble Tension
8  The Early Appearance of Supermassive Black Holes and Bright Galaxies
9.  Violations of Cosmological Principle: Isotropy, Homogeneity, and KBC Void 
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 5. Low Entropy

The CMB blackbody radiation in equilibrium has maximum entropy, with a volume density

in terms of the blackbody temperature T cmb and radiation constant a rad . But while Tcmb scales as  

(1 + z ) ≈ a(t)-1 with the expansion of the Universe, any given proper volume V scales as a(t)3. Thus, the total
blackbody entropy,  Scmb = Semb V, must have remained constant throughout the Universe’s history ( Frautschi

1982 ). 
The so-called “ past hypothesis ” conjecture, however, posits that the overall entropy of the observable Universe is
increasing monotonically. It must therefore have been significantly lower at earlier times ( Layzer 1975; Price 1996;
Albert & von Baeyer 2001; Earman 2006 ) . But this is clearly at odds with the CMB which suggests the Universe

∼was close to thermal and chemical equilibrium — a state of very high entropy — a mere  377,700 yr after the big
∼bang. And if the entropy soon after the big bang was as high as it appears to have been at decoupling ( i.e., z dec 

1090 ) , why are we living in a Universe, or a portion thereof, with anomalously low entropy today ( Zemansky et al.
1998; Albrecht 2002; Penrose 2004; Egan & Lineweaver 2010 ) , when physical processes, such as stellar evolution
and black hole accretion, are increasing the cosmic entropy everywhere? 
 This is the conflict known as the “ initial entropy problem (IEP).

The standard model currently has no explanation for why the Universe was initially in a very low entropy state ( as
required by the second law ) , and for how the CMB acquired such high entropy so soon after the big bang. Of
course, a very low initial entropy by itself is not necessarily the problem. For example, the Universe may have been
created from “ nothing ” and continues to evolve away from that initial state to which it will never return ( Vilenkin
1982; Hartle & Hawking 1983; Linde 1984 ) . The problem emerges when this very low initial entropy is coupled to
the subsequent entropy evolution implied by the CMB and what we see today.

The IEP has been one of the most contentious issues in standard cosmology. It remains unsolved. Neither the
equilibrium models nor the in fl ationary paradigm can adequately account for the very low initial entropy without
relying on a lack of “ naturalness. ” If the initial state of the Universe was random, characterized by a uniform
probability of microstates, it should have been born with maximum entropy, representing thermal equilibrium, not the
extremely unlikely low-entropy configuration required by Λ CDM. At face value, the standard model of cosmology
thus appears to be inconsistent with the firrst and second laws of thermodynamics, constituting yet another conflict with
our fundamental physical theories.
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 Cosmology and the Arrow of Time: The Second Law of Thermodynamics- One of the Biggest Problems
All the successfull equations of physics are symmetrical in time. Tbey can be used equally well in one direction in
time as in the other. The future and the past seem physically to be on a completely equal footing. Newton's Laws,
Hamiltons equations, Maxwell's equations, Einstein's general' relativity,'· Dirac's equation, the Schrodinger eqnation
. all remain efffectively unaltered if we reverse the direction of time. (Replace the coordinate t which represents
time, by -t.) The whole of Classical Physics and part of quantum mechanics is entirely reversible in time. 
Our physical understanding actually contains important ingredients other than just equations of time-evolution and
some of these do indeed involve time-asymmetries. The most important of these is what is known as the second
law of thermodynamics. The low entropy state seems specially ordered, in some manifest way, and the high entropy
state, less specially ordered. Define entropy. In rough terms, the entropy of a system is a measure of its manifest
disorder. The second law of thermodynamics asserts that the entropy of an isolated system increases with time (or
remains constant, for a reversible system). 
The concept of phase space or state space is a space in which all possible "states" of a dynamical system or a
control system are represented, with each possible state corresponding to one unique point in the phase space. The
entropy of a state is a measure of the volume V of the compartment containing the phase-space point which
represents the state. Entropy = k log V. 

The number of baryons in the universe is 1080. Now consider the phase space of the entire universe. Each point in the
phase space represents a point where there is a different universe. The quantity k is a constant, called Boltzmann's

constant. Its value is about 10-23 Joules per degree Kelvin. The essential reason for taking a logarithm here is to make
the entropy an additive quantity for independent systems. 

Putting this together with the Bekenstein-Hawking formula, we find that the entropy of a black hole is proportional to
the square of its mass:  Mass of Sun:

Sbh m
2 kG

h c
=

M⊙ 1.989 10
30

 kg=

According to a calculation performed in 1929 by Subrahmanyan Chandrasekhar, white dwarfs cannot exist if their masses
are more than about 1.4 times the mass of the sun, 1.4M⊙.  Note that the Cbandrasekhar limit is not much greater than the

sun's mass, whereas many ordinary stars are known whose mass is considerably greater than this value. But there is now a
new limit, anaIogus to Chandrasekhar's (referred to as the Landau-Oppenheimer-Volkov limit), whose modem (revised)
value is very roughly 2.5 solar masses. The gravitation attraction for a mass greater than this will result in the formation of a
black-hole.
Let us consider what was previously thought to supply the largest contribution to the entropy of the universe, namely the 2.7K
black-body background radiation. Astrophysicists had been struck by the enormous amounts of entropy that this radiation
contains, which is far in excess of the ordinary entropy figures that one encounters in other processes (e.g. in the sun). The
background radiation entropy is something like108 for every baryon (using natural units, so that Boltzmann's constant, is
unity). (In effect, this means that there are 108 photons in the background radiation for every baryon.) Thus, with 1080 baryons
in all, we should have a total entropy of 1088. 
The Bekenstein-Hawking formula tells us that the entropy per baryon in a solar mass black hole is about 1020 in natmal units
so had the universe consisted entirely of solar mass black holes, the total figure would have been very much larger than that
given above, namely 10100. 
Let us try to be a little more realistic. Rather than populating our galaxies entirely with black holes, let us take them to
consist mainly of ordinary stars-some 1011 of them and each to have a million (i.e. 106 ) solar-mass black-hole at its core (as
might be reasonable for our own Milky Way galaxy). Calculations by Roger Penrose shows that the entropy per baryon
would now be actually somewhat larger even than the previous huge figure, namely now 1021, giving a total entropy, in
natural umts, of 10101. This figure will give us an estimate of the total phase-space volume V available to the Creator, since
this entropy should represent the logarithm of the volume of the (easily) largest 
compartment. Since 10123 is the log of the volume, the volume must be the exponential of 10123, 

V 10
10

123

=
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 6. Discrepancy Between Theoretically Estimated & Actual Value of  Λ
A theoretical calculation of the cosmological constant based on a mechanical model of vacuum, 
Xiao-Song Wang, https://arxiv.org/pdf/2209.10525

In 1917, A. Einstein thought that his equations of gravitational fields should be revised to be

where gμv is the metric tensor of a Riemannian spacetime, Rμv is the Ricci tensor, R ≡ gμv Rμv is the

scalar curvature, gμv is the contravariant metric tensor, k is Einstein's gravitational constant,  is the

energy-momentum tensor of a matter system, Λ is the cosmological constant.

The cosmological constant is a measure of the energy density of the vacuum, which is the lowest
energy state. 

 Theoretical Estimate of Λ

A “natural” Planck system of units expresses everything as  combination of
fundamental physical constants; 
the Planck density is:

ρplanck
2π c

5

hbar G
2

:= ρplanck 3.243 10
97


kg

m
3

=

 The observed value is:

ρcrit ρ0:=Ωvac 0.7:=

ρvac Ωvac ρcrit:= ρvac 6.051 10
30- gm

cm
3

=

 This is Off by 123 Orders of Magnitude

 • This is modestly called “ the fine-tuning problem”
             (because it requires a cancellation to 1 part in 10123 )

• The other “natural” value is zero

• So, lacking a proper theory, physicists just declared the 
                cosmological constant to be zero, and went on…
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 7. The Hubble  H0    CMBR  versus   ΛCDM  Tension

Challenges for ΛCDM: An update, L. Perivolaropoulos and F. Skara, arXiv:2105.05208v3  [astro-ph.CO]
April 7, 2022

 Hubble Tension 

 One dimensional relative probability density value of  H0  derived by recent measurements
Notice that the tension is not so much between early and late time approaches but more between
approaches that calibrate based on low z (z  0.01) gravitational physics and those that are independent of
this assumption. 
For example cosmic chronometers and γ-ray attenuation which are late time but independent of late gravitational
physics are more consistent with the CMB-BAO than with late time calibrators.

 Data Sources: (Planck CMB (Aghanim et al. 2020e), ACT+WMAP CMB (Aiola et al. 2020), BAO+RSD (Wang
et al. 2017), BAO+WMAP CMB (Zhang and Huang 2019), BAO+BBN (Addison et al. 2018), SnIa-Cepheid
(Riess et al. 2021b), SnIa-TRGB (Jones et al. 2022), SnIa-Miras (Huang et al. 2019), SBF (Blakeslee et al. 2021),
SneII (de Jaeger et al. 2022), TD lensing (Wong et al. 2020), GW Standard Sirens (Abbott et al. 2020a), Masers
(Pesce et al. 2020), Tully Fisher (Kourkchi et al. 2020), γ-ray attenuation (Zeng and Yan 2019), cosmic
chronometers (Yu et al. 2018), HII galaxy (Fern´andez Arenas et al. 2018)). All measurements are shown as
Normalized Gaussian Cistributions. 
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 8. Early Appearance of Supermassive Black Holes: Age-Low Redshift 
A Candid Assessmet of Standard Cosmology, Fulvio Melia
  

The Early appearance of quasars in the Λ CDM Universe ( Melia 2018) , such as ULAS J134208.10 + 092838.61 (
henceforth J1342 + 0928, an ultraluminous supermassive black hole at redshift z = 7.54. This object has an inferred

mass of M = 7.8 108  M and (as we shall see shortly ) should have taken more than 820 Myr to grow via standard
Eddington-limited accretion. But its redshift suggests we're seeing it only several hundred Myr after
Population II and III Supernovae could have created ∼the (presumably )  5 – 25 Me seed that started its

growth to the gargantuan object we see today.
The growth of black hole seeds ( massive or otherwise ) is constrained by the maximum luminosity attainable due to the
outward radiation pressure on ionized matter under the influence of gravity.  The limiting power in hydrogen-rich plasma

is known as the Eddington limit,  LEdd ≈ 1.3 × 10 38 ( M/Me ) ergs s− 1 . With an assumed effiiciency, ε, for converting

rest-mass energy into radiation, one then infers an accretion rate  M = Lbol c
2, in terms of the bolometric luminosity,

Lbol. One typically adopts a fiducial value ε = 0.1 to cover the possible variations in basic accretion-disk theory, to

arrive at the expression

(Salpeter 1964; Melia 2013b ) , whose solution is known as the Salpeter relation, where 
Mseed ∼ (  5 – 25 Me ) is the seed created at  tseed.

Mseed 5 M⊙:=

MSalpeter t( ) Mseed exp
t 820-( ) Myr

45Myr

















:= MSalpeter 820( ) 5 M⊙=

Conventional astrophysics thus predicts that J1342 + 0928 should have taken approximately 820 Myr to grow from an initial
black hole mass of 10 M⊙.  Although mergers in the early Universe ( Lippai et al. 2009; Tanaka & Haiman 2009;

Hirschmann et al. 2010 ) might have shortened this growth time, there are limitations to how this mechanism could have
worked. Simulations show that the black hole distribution always converges toward a Gaussian, irrespective of how one

∼chooses the initial seed profile. But to comply with the observational constraints,  100 Me seeds must have started forming
∼ ∼no later than z  40 ( Tanaka & Haiman 2009) , well before the EoR. In addition, seeds must not have formed after z  20 –

∼30, for then there would be an overproduction of black holes at  10 5 M⊙ ∼  to   10 7 M⊙ ) compared to the data ( see, e.g.,

Figures 5 and 6 in Tanaka & Haiman 2009 ) . Without this cutoff, the lower mass black holes would be over-represented by
∼a factor  100 – 1000. 

The suggestion that early mergers might have critically impacted the formation of supermassive black holes at high-z is
therefore inconsistent with our view of how and when Population III stars were born. The onset of the EoR at 
∼ ∼t  400 Myr is set by the cooling time to form the first generation of stars, corresponding to z  15 — much later than
∼ ∼z  40.  And there is no explanation for why these stars then stopped forming below z  20 – 30, even before the EoR

started. One would be forced to hypothesize that some mechanism other than Population III supernovae must have
created the massive seeds well before the EoR, requiring new, unknown physics.  

∼But we simply have no observational evidence for such events occurring prior to z 15.
An additional problem with the merger scenario is that the halo abundance now appears to have been smaller than
previously thought by at least an order of magnitude. Large (4 Mpc3) high-resolution simulations ( Johnson et al. 2013 )

∼show that Population III and II star formation overlapped and evolved down to z  6. The enhanced metal enrichment and the
feedback radiation — including molecule-dissociating Lyman –Werner photons that destroyed the coolants H2 and HD
required for the condensation of early matter — would have significantly altered the halo and Population III star formation
rates. Indeed, both the halo and Population III star formation rates would have been reduced by an order of magnitude at z >=
10 compared to previous, less sophisticated simulations. This net shift reduced the volume density of Population III
supernovae, and the density of black hole seeds they produced, at the redshift ( z >= 10 ) when the frequency of mergers
among these objects would have mattered most.
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 XXX. Some Key Problems of the ΛCDM Cosmology - Continued

9.  Violations of Cosmological Principle: Isotropy, Homogeneity, and KBC Void 
10. Cosmological Lithium Problem: Observable Lithium less than calculated Λ-CDM Model by Factor of 3-4.
11. Early Universe High Redshift Galaxies: JWST sees galaxies JADES-GS-z14-0 at redshift of 14.32        
12. Unfalsifiability: ΛCDM model is built upon a foundation of conventionalist stratagems: 

      Not Popper Unfalsifiable.
13. Electroweak Horizon Problem - Higgs -->Possible phase transition associated - Grand Unification Theories
14. Latest Findings JWST Challenge Cosmology Models - Early Galaxies
15. XXXIII. The Inflation Hypothesis and the Very Early Universe
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 14.  Latest Findings JWST Challenge Cosmology Models - Early Galaxies

Astrophysicists may have an explanation for the James Webb Space Telescope's discovery of a swarm of mysterious
early galaxies that threaten to break cosmology. 

 The ΛCDM Model predicts that, as we look farther and farther back in time — i.e., to greater and greater cosmic
distances — that the galaxies we see will be inherently smaller, bluer, less evolved, less rich in heavy elements, and that
at some point beyond where we’ve been able to look, we should cease to see stars or galaxies of any type, as we’ll
reach the Universe’s “dark ages.” 

 Webb finds most distant known galaxies  ( JADES-GS-z14-0 and z14.32  290 Million Years after Big Bang
   Brighter, Larger, Redder, and Younger and Oxygen (indicates 2nd Generation) does not agree with ΛCDM Model.

 https://www.livescience.com/space/cosmology/james-webb-telescopes-observations-of-impossible-galaxies-at-
 the-dawn-of-time-may-finally-have-an-explanation
The galaxies, which the James Webb telescope (JWST) spotted forming as early as 500 million years after the Big Bang,
were so bright that they theoretically shouldn't exist: Brightnesses of their magnitude should only come from massive
galaxies with as many stars as the Milky Way, yet these early galaxies took shape in a fraction of the time that ours did.

The discovery threatened to upend physicists' understanding of galaxy formation and even the standard model of
cosmology. Now, a team of researchers using supercomputer simulations suggest that the galaxies may not be so
massive at all — they could just be unusually bright. 

 Bursts of star formation explain mysterious brightness at cosmic dawn Intense  ashes of light, not mass,
 resolve the puzzle of impossible brightness Peer-Reviewed Publication,NORTHWESTERN UNIVERSITY,
 3-OCT-2023
A period that lasted from roughly 100 million years to 1 billion years after the Big Bang, cosmic dawn is marked by the
formation of the universe’s  rst stars and galaxies. Before the JWST launched into space, astronomers knew very little
about this ancient time period.

 “The JWST brought us a lot of knowledge about cosmic dawn,” Sun said. “Prior to JWST, most of our knowledge
about the early universe was speculation based on data from very few sources. With the huge increase in observing
power, we can see physical details about the galaxies and use that solid observational evidence to study the physics to
understand what’s happening.”

 Do JWST’s results contradict the Big Bang? 
https://bigthink.com/starts-with-a-bang/jwsts-contradict-big-bang/ 

Many of these early galaxies that JWST is finding have peculiar, puzzling properties about them that appear difficult to
reconcile with this theoretical picture that the Universe has painted for us. They appear, for example, to be: 

very massive, ·
very bright, ·
very rich in heavy elements - High Metallicity.  See Section XXX, ·
very actively forming new stars, ·
and very rich in gas. ·

 Prognosis:
There are an enormous number of astrophysical possibilities that invoke no fundamentally new physics that could 
potentially account for why these galaxies would exist with these large masses and brightnesses.  
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 XXXII. The Inflation Hypothesis and the Very Early Universe2

A hypothesis is an educated guess or prediction about the relationship between two variables. It must be a testable
statement; something that you can support or falsify with observable evidence. The objective of a hypothesis is for
an idea to be tested, not proven.

What is the concept of inflation? In a cosmological context, inflation can most generally be defined as the hypothesis
that there was a period, early in the history of our universe,  when  the  expansion  was  accelerating  outward;  that
is, an  epoch when the acceleration equation.

t
a

d

d

8πG ρν

3
a= Hν a=

tells us that when P < −ε/3. Thus, inflation would have taken place if the universe were temporarily dominated by a
component with equation-of-state parameter w < −1/3. The simplest implementation of inflation states that the
universe was temporarily dominated by a positive cosmological constant Λi (with w = −1), and thus had an

acceleration equation that could be written in the form

the Hubble constant Hi during the inflationary phase was thus constant, with the value Hi = (Λi/3)1/2, and the

scale factor grew exponentially with time: 

During inflation, the universe is dominated by the vacuum energy.   In a time interval, Δt the universe expands
by a factor exp(Hν Δt).  Define the Doubling Time, tD, as the time it takes the universe to double in size. 

 In the early universe, when the scale factor is very small, then mass density ρm must be much greater than ρν. 

Matter density ρm is diluted. Then Doubling Time, tD, is:

ρν 10
71 gm

cm
3

:=

e
Hν tD

2=

tD 2.932 s 10
33-

=

To see how a period of exponential growth can resolve the flatness, horizon, and  monopole  problems,
suppose  that  the  universe  had  a  period  of exponential  expansion  sometime  in  the  midst  of  its  early,
radiation-dominated  phase.  For  simplicity,  suppose  the  exponential  growth  was switched on
instantaneously at a time ti, and lasted until some later time tf, when  the  exponential  growth  was  switched  off

instantaneously,  and  the universe reverted to its former state of radiation-dominated expansion. In this simple
case, we can write the scale factor as

Note that the inflationary expansion
is superluminal: the space can
expand much faster than c.

Hν
8π G ρν

3
:=

tD Hν
1-

log 2 e, ( ):=
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Thus, between the time ti, when the hypothesized  exponential inflation began, and the time tf, when the inflation

stopped, the scale factor increased by a factor

where N, the number of e-foldings of inflation, would be

If  the  duration  of inflation,  tf  −  ti,  was  long  compared  to the Hubble time during inflation, then N was large,

and the growth in scale factor during a hypothetical inflationary period would be enormous.

For concreteness, let’s take one possible model for inflation. This model states  that  exponential  inflation

started  around  the  GUT  time,  ti  ≈  tGUT  ≈ 10−36 s, with a Hubble parameter and lasted for N e- foldings,

ending at tf ≈ (N + 1)tGUT. Note that the cosmological constant Λi present at the time of inflation in this model

was very large compared to the cosmological  constant  that  is  present  today.  Currently,  the  evidence  is

consistent with an energy density in Λ of εΛ,0 ≈ 0.69εc,0 ≈ 0.0034 TeVm−3. To produce exponential expansion

with a Hubble parameter Hi ≈ 1036 s−1, the cosmological constant during inflation would have had an energy
density

over 107 orders of magnitude larger.

Prior to the inflationary period, the universe was radiation-dominated. Thus, the horizon distance at the
beginning of inflation was

The horizon size at the end of inflation was

 If N, the number of e-foldings of inflation, is large, then the horizon size at the end of inflation was

An  epoch  of  exponential  inflation  causes  the  horizon  size  to  grow exponentially.  If  inflation  started  at

ti  ≈  10−36s,  then  the  horizon  size immediately 

For concreteness, let’s assume N = 65 e-foldings of inflation, just a bit more than the minimum of 60 e-foldings
required to explain the flatness of today’s universe. In this fairly minimal model, if we take   the horizon size
immediately after inflation was
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∼During  the  brief  period  of    10−34s  that  inflation  lasts  in  this  model,  the horizon size is  boosted
exponentially from submicroscopic scales to something the size of a whale.The exponential increase in
the horizon size during inflation is illustrated by the solid line in Figure 10.3. In the post-inflation era, when the

∝ ∝universe reverts to being radiation-dominated, the horizon size grows at the rate dhor  a  t1/2, as points that
were separated by a distance dhor(tf) at the end of inflation continue to be carried apart from each other by the

expansion of the universe. 

In  the  hypothetical model  we’ve  adopted,  where  inflation  started  around  the GUT time and lasted for N =

65 e-foldings, the scale factor was a(tf ∼)  2 ×10−27 at the end of inflation, estimated from Equation 10.30. At the

time of last scattering, the scale factor was a(tls) ≈ 1/1090 ≈ 9.1 × 10−4. Thus, in our

model, the horizon distance grew from dhor(tf ∼)  15 m at the end of inflation to dhor(tls ∼)  200 Mpc at the time of

last scattering. This is 800 times bigger than the horizon size dhor(tls) ≈ 0.25 Mpc that we calculated in the absence

of inflation,  and  is  large  enough  that  antipodal  points  on  the  last  scattering surface are causally connected.

This model states that exponential  inflation started around the GUT  time,  ti  ≈  tGUT  ≈ 10−36 s, with a

Hubble parameter and lasted for N e- foldings, ending at tf ≈ (65 + 1)*tGUT. 

GUT 10
35-

:=

<==          Standard Cosmology         ==>

 Recombination 
 p+ +  e-   H + γ

<===                 Radiation Era                 ==> <== Matter 
          Era

<==== Inflationary Epock

Planck
Length

     GUT Era                              
False Vacuum                           True Vacuum

       Now 13.8 Gyrs

The solid line shows the growth of the horizon distance in a universe where exponential inflation begins at 

t = 10 −36s and lasts for N = 65 e-foldings. The dashed line, for comparison, shows the horizon distance in a
radiation-dominated universe without an inflationary epoch.
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 Biggest Weakness of The ΛCDM Theory - the Inflation Hypothesis
 The Weight of the Vacuum - The Worst Scientific Prediction Ever 
• A “natural” Planck system of units expresses everything as combination of fundamental physical constants;
 the Planck density is:

• The observed value is:

• This is modestly called “the fine-tuning problem”  The above shows that it requires a cancellation to 1 part in 10123 )
• The Physical Origins of the Dark Energy are completely unknown at this time, 

 The Inflation Hypothesis
The ΛCDM Theory starts with the assumption that the universe sprang from a "singularity". Singularity is a
mathematical concept and it has no meaning in the realm of Physics. It may be Mathematics, but it certainly is not
Physics.  It is disturbing that the two main ingredients in ΛCDM, Cold Dark Matter and Dark Energy, are not
understood.

The ΛCDM Theory is based on the concept of Inflation. Inflation postulates that after 10-36 seconds that the universe
expanded by a factor of a thousand billion billion billion and then at the right moment the inflation stopped. What is the
physical mechanism for inflation? An Inflaton field? How did the inflation know when to stop? How could it have
stopped everywhere at the same instant. 

In order to explain the rotational velocity of galaxies and a few other phenomena, the concepts of dark matter and
dark energy were proposed as explanations.  The nature of dark matter is unknown and dark energy is presumed to

be the cosmological constant.  Quantum theory predict that this constant is 10120 times larger than the measured value.
This has been referred to as the biggest error ever made in science. 
The ΛCDM Theory predicts that the initial galaxies that were formed a few millions years after the BB, that galaxies
would be formed that would be small in size.  Contrary to the predicted, the JWT is finding that there are some large
galaxies that were formed at this time. 
The Model of GR assumes that the universe is isotropic and homogenous. This may be true locally, but it is not known
is this is true in general.  
To demonstrate inflation's problems, we will start by following the edict of its proponents: assume inflation to be true
without question. 

 Neil Turok: Physics is in Crisis  
 Inflation is not a theory.  It is a huge collection of models. 
During the Planck Era, the symmetry of the matter gets broken due to the curvature of space-time and this is called a
trace anomaly.  What goes along with this, when you have all these Quantum fields which are describing the matter, so
photons, electrons, all of them are associated with a Quantum field.   The vacuum field is unable to stand still.  The
vacuum is not empty.   The vacuum consists of all the vibrations of all the fields that you add in the standard model and
the problem is those vacuum vibrations should produce huge gravitational waves.  “Gravity” detects the energy of the
vibrations of particle fields and should produce huge gravitational waves.  There have been no primordial gravitational
waves detected. 

Physicists have essentially been cheating.  Taking that vacuum energy of all the fields that we know about and just
subtracted it. That is not really consistent. Feynmann acknowledged this.  All the great physicists acknowledge this.
That what we do is essentially when we do Quantum field Theory and couple it to gravity.  This is essentially to cheat.

With Inflation we've found a way around that cheat. We've found a way to cancel the trace anomaly and to cancel the
vacuum energy without adding even one particle to the standard model. That mechanism turns out to give fluctuations
as a side effect and those fluctuations.
This may match the observations and we then have the best of all possible worlds.
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  Is the theory at the heart of modern cosmology deeply flawed?   Paul J. Steinhardt

 https://www.scientificamerican.com/article/cosmic-inflation-theory-faces-challenges/
"One thing it would tell us is that at some time shortly after the big bang there had to have been a
tiny patch of space filled with an exotic form of energy that triggered a period of rapidly
accelerated expansion (“inflation”) of the patch. Most familiar forms of energy, such as that
contained in matter and radiation, resist and slow the expansion of the universe because of
gravitational self-attraction. Inflation requires that the universe be filled with a high density of
energy that gravitationally self-repels, thereby enhancing the expansion and causing it to speed up.
It is important to note, however, that this critical ingredient, referred to as inflationary energy, is
purely hypothetical; we have no direct evidence that it exists. Furthermore, there are literally
hundreds of proposals from the past 35 years for what the inflationary energy may be, each
generating very different rates of inflation and very different overall amounts of stretching. Thus, it
is clear that inflation is not a precise theory but a highly flexible framework that encompasses many
possibilities."

 Is the theory at the heart of modern cosmology deeply flawed?   Paul J. Steinhardt
 https://www.jstor.org/stable/26002474

 Summary: 
Highly improbable conditions are required to start inflation. Worse, inflation goes on eternally,
producing infinitely many outcomes, so the theory makes no firm observational predictions.
The basic idea of the big bang is that the universe has been slowly expanding and cooling ever
since it began some 13.7 billion years ago. This process of expansion and cooling explains many of
the detailed features of the universe seen today, but with a catch: the 
universe had to start off with certain properties.

 For instance, it had to be extremely uniform, with only extremely tiny variations in the distribution
of matter and energy. Also, the universe had to be geometrically flat, meaning that curves and
warps in the fabric of space did not bend the paths of light rays and moving objects. But why
should the primordial universe have been so uniform and flat? A priori, these starting conditions
seemed unlikely. That is where Guth’s idea came in. He argued that even if the universe had
started off in total disarray—with a highly nonuniform distribution of energy and a gnarled
shape—a spectacular growth spurt would have spread out energy until it was evenly dispersed and
straightened out any curves and warps in space. 

What gave Guth’s idea its appeal was that theorists had already identified many possible sources of
such energy. The leading example is a hypothesized relative of the magnetic field known as a scalar
field, which, in the particular case of inflation, is known as the “inflaton” field. 

The inflaton’s potential energy can cause the universe to expand at an accelerated rate. In the
process, it can smooth and flatten the universe, provided the field remains on the plateau long

enough (about 10–30 second) to stretch the universe by a factor of 1025 or more along each
direction. Inflation ends when the field reaches the end of the plateau and rushes downhill to the
energy valley below. At this point, the potential energy converts into 
more familiar forms of energy—namely, the dark matter, hot ordinary matter and radiation that fill
the universe today. The universe enters a period of modest, decelerating expansion during which
the material coalesces into cosmic structures.
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The self-perpetuating nature of inflation is the direct result of quantum physics combined with
accelerated expansion. Recall that quantum fluctuations can slightly delay when inflation ends.
Where these fluctuations are small, so are their ef affects. Yet the fluctuations are uncontrollably
random. In some re regions of space, they will be large, leading to substantial delays.

Inflating points continue to grow and, in a matter of instants, dwarf the well-behaved region that
ended inflation on time. The result is a sea of inflating space surrounding a little island filled with
hot matter and radiation. What is more, rogue regions spawn new rogue regions, as well as new
islands of matter—each a self-contained universe. The process continues ad infinitum, creating an
unbounded number of islands surrounded by ever more inflating space. 
 What does it mean to say that inflation makes certain predictions—that, for example, the
universe is uniform or has scale-invariant fluctuations—if anything that can happen wi happen an
infinite number of times? 

For inflation, the observed outcome depends sensitively on what is the initial state. That
defeats the entire purpose of inflation: to explain the outcome no matter what conditions
existed beforehand.

The naive theory supposes that inflation leads to a predictable outcome governed by the laws of
classical physics. The truth is that quantum physics rules inflation, and anything that can happen
will happen. And if inflationary theory makes no firm predictions, what is its point? The
underlying problem is that procrastination carries no penalty—to the contrary, it is positively
rewarded. Rogue regions that delay ending inflation continue to grow at an accelerating pace, so
they invariably take over. 

The Big Bang also leads to the conclusion that most of the matter in the universe is not the
 “normal” atomic matter with which we are familiar. One of the arguments for the Big Bang is
that it appears to be able to account for the relative abundance of the “light” chemical elements
such as hydrogen, helium, and lithium. However, the nuclear recipe that accounts for the
abundance of these light elements also fixes the total number of protons and neutrons (classified
as baryons) generated by the Big Bang. Since atoms contain protons and neutrons, atoms are
classified as baryonic matter. Observations suggest the possible existence of large amounts of
non-luminous dark matter in addition to the luminous matter (stars and luminous gas) that we can
observe. The ratio of total matter to visible matter is often claimed to be roughly ten to one,
which implies that dark matter would account for about 90 percent of the matter in the universe.
Accounting for this “missing” dark matter is quite difficult, which is why both creationist and
evolutionist cosmologists have suggested that what we perceive as large amounts of dark matter
may actually result from unknown physics
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 XXXIII    Proof of the Borde-Guth-Vilenkin (BGV) Theorem
The beginning of­the universe. 
The Borde Guth Vilenkin Theorem, indefinitely continued into past., Vilenkin,   
Inference-review.com/ VOL. 1, NO. 4 / OCTOBER 2015

The BGV theorem demonstrates “that any inflating model that is globally expanding must be geodesically 
incomplete in the past”.

Was the big bang truly the beginning of the universe?  A beginning in what? Caused by what? And determined by
what, or whom? These questions have prompted physicists to make every attempt to avoid a cosmic beginning.

Physicists hoped initially that the singularity might be an artifact of Friedmann’s simplifying assumption of perfect
uniformity, and that it would disappear in more realistic solutions of Einstein’s equations. Roger Penrose closed this
loophole in the mid-1960s by showing that, under a very general assumption, the singularity was unavoidable. Under
the null convergence condition, gravity always forces light rays to converge.
(Mathematically, the null convergence condition (NCC) requires that the Ricci curvature tensor Rμν must satisfy

RμνN
μNν ≥ 0 for all null vectors Nμ. A null vector is a vector of zero norm, NμNμ=0.   Combined with Einstein's

equations, NCC is equivalent to the null energy condition (NEC), requiring that TµνNµNν  ≥ 0 for all null Nµ, where

Tµν is the Einstein Energy-Momentum Tensor.) 

 Proof

Start with a homogeneous, isotropic, and spatially flat universe with the metric: 
This implies that the density of matter or energy measured by any observer cannot be negative. The
conclusion holds for all familiar forms of classical matter.

The Hubble expansion rate is H = a˙/a , where the dot denotes a derivative with respect to time t. We can imagine that
the universe is filled with comoving particles, moving along the timelike geodesics vector x = const. Consider an inertial
observer, whose world line is xμ(τ), parametrized by the proper time τ. For an observer of mass m, the 4-momentum is

Pμ=m dxμ/dτ , so that dτ = (m/E)dt where E =  P0  = ( p2+m2)1/2  denotes the energy, and p, the magnitude of the
∝3-momentum. It follows from the geodesic equation of motion that p  1/a(t) , so that

 p(t) = [a(tf)/a(t)]pf, where pf designates the momentum at some reference time tf.   

Thus

where ti < tf is some initial moment.

Note that:
where γ

1

1 ν2-
=

γ is the Lorentz factor, and νrel  =  p/E  is the observer’s speed relative to the comoving particles.  

 For any non-comoving observer, γ > 1 and F(γ) > 0
VXPhysics 164



The expansion rate averaged over the observer world line can be defined as

Define: 

Assuming that Hav > 0 and using the first equation, it follows that

This implies that any non-comoving past-directed timelike geodesic satisfying the condition Hav > 0, must have a

finite proper length, and so must be past-incomplete.

There is no appealing to homogeneity and isotropy in an arbitrary space-time. Imagine that the universe is filled with a
congruence of comoving geodesics, representing test particles and consider a non-comoving geodesic observer
described by a world line xμ(τ)  

Let uμ and νμ
 designate the 4-velocities of test particles and the observer.

Then the Lorentz factor of the observer relative to the particles is

To characterize the expansion rate in general space-time, it suffices to focus on test particle geodesics that cross the
observer’s world line. Consider two such geodesics encountering the observer at times τ  and τ + Δτ.
Define the parameter

with F(γ) = 1/γ, and γ defined by

Clearly, F(γ) > 0 , and the argument goes through as before.

In general relativity, a timelike congruence in a four-dimensional Lorentzian manifold 
can be interpreted as a family of world lines of certain ideal observers in our spacetime. 

A rigorous formulation of the BGV theorem is now possible. 
Let λ be a timelike or null geodesic maximally extended to the past, and 

let C be a timelike geodesic congruence defined along λ.

 A universe that has been expanding on average throughout its history 
cannot be infinite in the past but must have a beginning.

If the expansion rate of C averaged along λ is positive, 
then λ must be past-incomplete.
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 XXXIV. Some Historical Models of Cosmology

 Examples:  Simulations of the Trajectory to the Moon and Back

 Kepler Planetary Models
I. Simple Lunar Trajectories: Kepler's Elliptical Model (Planar Point Mass)
II. The Patched Conic Section Approximation for Finding a Lunar Trajectory

 Newton's Planetary Models
IA.  Apollo Free Return Trajectory:  3 Body Sim for CSM to the Moon & Back

 Astronomy Glossaries
https://lambda.gsfc.nasa.gov/product/suborbit/POLAR/cmb.physics.wisc.edu/tutorial/glossary.html

https://ecuip.lib.uchicago.edu/multiwavelength-astronomy/glossary/glossary.html
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 I. Simple Lunar Trajectories: Kepler's Elliptical Model (Planar Point Mass)
 This Section on Kepler is shown for historical interest. Newton's Dynamics is used in all the following Sections

ϕ 0.977 48.43418 deg⋅, ( ) 153.029=

Convert Cartesian Ellipse Eq. in (x,y) to polar (r,ν) coordinates
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 For the moon
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Plot of Conic Orbits: c, e, p, h
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 Basics from Newton's Laws: Energy, Momentum, Parameters of Ellipse  ro 300km:= ϕo 0:=
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 Recursion for Eccentric Anomaly, M & E (Deg) MA Mo t, to, ( ) Mo
μ

am
3

t to−( )⋅+:=

mean anomaly M (in deg (0<= M<=360)

Note: a and b are distances from the center, c  

 If we can Solve for Eccentric Anomaly, E, we get Time of Flight, TOF, t - T

cos ν( )
p r−

e r⋅
=

 Period of Moon Sat Orbit

 Kepler's E Model  (Planar Point Mass 2 Body) :  See the Glossary and Figures in last two pages of this Study

The parameter e is known as the eccentricity. The value of this parameter defines the shape of our orbit.
Depending on the value of e there are four kinds of shapes (conic sections), which means there are four
kinds of orbits: circle, ellipse, parabola, and hyperbola, for e = 0,   <  1,    = 1,    and  > 1, respectively.
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i 0←
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 Find E  and  ϕ In Degrees

EcA em 27, 5, ( ) 28.501=

dap 406603km:=



 The Patched Conic Section Approximation for Finding a Lunar Trajectory

When the spacecraft is within the sphere of
influence of the moon, only the gravitational force
between the spacecraft and the moon is
considered, otherwise the gravitational force
between the spacecraft and the earth is used. This
reduces a complicated n-body problem to multiple
two-body problems, for which the solutions are
the well-known conic sections of the Kepler
orbits. Below is an example composite solution.

See for Example: 
Optimal Two-Impulse Trajectories with
Moderate Flight Time for Earth-Moon Missions,
Sandro da Silva Fernandes
Mathematical Problems in Engineering
Vol. 2012, Article ID 971983,
                            or
Bate, R. R., D. D. Mueller, and J. E. White,
Fundamentals of Astrodynamics 

Rather than dealing with large powers of 10, we can use Astronomical Units, for distance, velocity, time: AU, VU, TU.
Where AU is the mean distance of the earth to the sun and DU is the radius of the earth. TU is the time unit. Then the 
velocity unit, (VU) is equal to DU/TU.  

DU 6378.145km:= AU 1.496 10
8
km⋅:= kmps

km

s
:= VU 7.905368kmps:= D dm:=

Rsif D
mm

me
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0.4

⋅:= Rs 66300km:= Rs 10.395 DU⋅=

 The conic patched problem for finding a trajectory can be stated as follows: 
 Given: Initial rocket launch conditions in the earth's sphere of Influence, that is, initial position, velocity, flight path

angle, and phase angle: r0, v0 ϕ0, and γ0 , 

The three quntities r0, v0 ϕ0  will give us initial energy and anglular momentum.

Find: Arrival conditions at moon's Sphere of Influence:  r1, v1 ϕ1, λ1.

The problem with assigning these initial points is that they may not give a satisfactory solution to match the

arrival conditions. Our strategy is to use the arrival ange λ1 to the moon's SOI as one of the independent condition

.

 Given  the 3 initial conditions and one arrival condition as our independent variables:  
These will move us into the radius of the moon's sphere of influence. Some trial and error may still be required.

r0, v0 ϕ0, and λ1

Laplace's Equation for Moon's Sphere of Influence:

this is about 1/6 of the distance, D,  to the moon

TU 806.8s:=

The Patched Conic Method is an Approximation for finding a trajectory by dividing space between the
sphere of influence (SOI) of the earth, Lunar Earth Orbit (LEO) and the SOI region of the moon.  



EXAMPLE:  See Bate, R. R., D. D. Mueller, and J. E. White, Fundamentals of Astrodynamics 

 Solution: Select the  Apollo 11 Flight Conditions for initial conditions: r0, v0, ϕ0 and λ1  

 Given: r0 DU 334km+:= v0 10.6kmps:= ϕ0 0deg:= A reasonable angle to arrive at moon λ1 30deg:=

 Find: r1,  v1,   ϕ1,  γ1 (the last symbol, γ, is the Greek letter gamma, the Arrival Phase Angle at the Moon)  

Initial Energy and Angular Momentum are Energy v0 r0, ( ) 0.011− VU
2
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In order to calculate the Time of Flight, TOF, to the moon's SOI, we need to Find:

p, a, e, E0 and E1 for the Geocentric Trajectory. 

p
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We can use the same procedure at the moon (Selenocentric). 
See Section XVI for the Newtonian Gravitational Solution for the Lunar Trajectory.
We need to determine the values of v1 and Rs in units based on the moon's gravitational attraction parameters.
The Angular Velocity of the Moon (ωm) in its orbit is
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 Time of Flight

Develop an algorithm to Calculate Time of Flight
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This gives a different value
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Note: As the velocity increases above the minimum 10.8 kmps, the Time of Flight decreases 
and the trajectory shape changes from Elliptical to Hyperbolic. 



 Polar Plot of the  Solution for the  Patched Conic Lunar Approximation
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 Polar Plot: Geocentric Frame - Earth at the Center

 From the list of functions shown on the left of the plot below:

r(ν) shows the Trajectory Ellipse Conic Ptach in blue,  Earth(θ) is at the center in black,  rmoon(θ,φ) in red is the

location of the moon at intercept φ = 33o,  rmsi(θ)  is the circle in green of the moon's of sphere of influence,

rmoon(θ,0) in red is the initial location of the moon at 0o, rm_path(ξ) is the dotted line path of moon from 0 to φ.  r(χ) is

the dotted line that shows the elliptical path back to the earth, and rline is the red straight line from earth at center to

the moon to show angle λ1. SpCraft is where SpaceCraft enters the Moon's Sphere of Influence. Point of Conic

Patch. Blue dot.
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 IA.  Apollo Free Return Trajectory:  Simulation for CSM to Moon & Back
Trajectory Model: 3-Body (Earth, Moon, Spacecraft) 2D Planar Point Mass with Earth at Center

This 3 body gravitational solution for the FRT uses the Mathcad Differential Equation Solving Methodology discussed:
arXiv:1504.07964 

"Motion of the planets: the calculation and visualization in Mathcad",   Valery Ochkov, Katarina Pisa

The aborted Apollo 13 mission was the only mission to actually turn around the Moon in a free-return trajectory. 

 Solve the Gravitational and Dynamics Equations for Earth, Moon, &  CSM Trajectory

torb = 81.44 hr

Given  Solve Set of Differential Guidance Equations for 3 Body Problem of  Earth, Moon, and CSM
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 IA. Free Return Trajectory:  3 Body Sim for CSM to the Moon & Back

 

Time of Flight (TOF) = torb



 IA. Free Return Trajectory:  3 Body Sim for CSM to the Moon & Back
Trajectory Model: 3-Body (Earth, Moon, Spacecraft) 2D Planar Point Mass with Earth at Center

Rocket velocity 
scale km/s------

Finding a Free Return Trajectory (FRT) is a little tricky.  First, the trajectory must catch the moon at the exact place
and time as travels around the earth and then after being swing around by the moon's gravity it must swing back and
catch the earth in such a way as to go into earth orbit.  This can present a problem for the Differential Equation Solver.
This is a three body problem.  A change in the CSM's trajectory is influenced by the pull the moon, which in turn is
affected by the pull of the earth. The solver can easily fail to converge on a solution. A change in angle by 10 degrees
can result in a large change in orbit time of 4.5 days. We also must check that CSM does not crash into moon. 
   

Below is a plot of our FRT solution for the Apollo Trajectory. It shows the CSM's x,y position and velocity from earth to
moon and back. .Note the figure 8 orbit of this Free Return. The Apollo 11 flight time to the moon was 77 hours.  Our
simulation is for 81.4 hours. Because of instabilities, convergence problems, etc. some trial and error was required.



 IB. 4-Body Sim of Apollo Free Return Trajectory: CSM to Moon & Back
Trajectory Model: 4-Body (Earth, Moon, Sun, Spacecraft) 2D Planar Point Mass w Earth at Center

Time of Flight (TOF) = torb

 IB. 4-Body Sim of Apollo Free Return Trajectory: CSM to Moon and Back



 IB. 4-Body Sim of Apollo Free Return Trajectory: CSM to Moon and Back
Trajectory Model: 4-Body (Earth, Moon, Sun, Spacecraft) 2D Planar Point Mass w Earth at Center

 Plot for Sim of 4-Body Free Return Traj: CSM to Moon and Back


